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Abstract

This paper is about the good side of modal logic, the bad side of modal logic, and how hybrid logic
takes the good and fixes the bad.

In essence, modal logic is a simple formalism for working with relational structures (or multi-
graphs). But modal logic has no mechanism for referring to or reasoning about the individual nodes
in such structures, and this lessens its effectiveness as a representation formalism. In their simplest
form, hybrid logics are upgraded modal logics in which reference to individual nodes is possible.

But hybrid logic is a rather unusual modal upgrade. It pushes one simple idea as far as it will
go: represent all information as formulas. This turns out to be the key needed to draw together a
surprisingly diverse range of work (for example, feature logic, description logic and labelled deduc-
tion). Moreover, it displays a number of knowledge representation issues in a new light, notably the
importance of sorting.
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1 Modal Logic and Relational Structures

To get the ball rolling, let’s recall the syntax and semantics of (propositional) multi-
modal logic.

Definition 1.1 (Multimodal languages) Given a set of propositional symbols
PROP ={p,q,p',q,...}, and a set of modality labels MOD = {m,n',...}, the set of
well-formed formulas of the multimodal language (over PROP and MOD) is defined
as follows:

WFF:=p|-p|oA|oVelo =9 |(m)e]|[r]p,
for all p € PROP and m € MOD. As usual, p ¢ = (o = Y) A = o).

Definition 1.2 ((Kripke) models) Such a language is interpreted on models (often
called Kripke models). A model M (for a fized choice of PROP and MOD) is a triple
(W,{R. | # € MOD},V). Here W is a non-empty set (I'll call its elements states,
or nodes), and each R, is a binary relations on W. The pair (W,{R, | # € MOD})
is called the frame underlying M, and M is said to be a model based on this frame.
V' (the valuation) is a function with domain PROP and range Pow(W); it tells us at
which states (if any) each propositional symbol is true.
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Definition 1.3 (Satisfaction and validity) Interpretation is carried out using the
Kripke satisfaction definition. Let M = (W, {R, | # € MOD},V) and w € W. Then:

M,wlkp iff w € V(p), where p e PROP
M,w Ik —p iff M,wlfe

MwlkpAy  iff Mywlky and M,wlk
MwlFpvey iff Mywlky or Mywlky
Mwlkp =Y iff Mywlfeor Mywlky
M, w Ik (m)p iff Fw(wRrw' & M,w'IF )
M, wlF [r]p iff V' (wR;w' = M,w'IFp).

If M,w IF ¢ we say that ¢ is satisfied in M at w. If ¢ is satisfied at all states in all
models based on a frame F, then we say that ¢ is valid on F and write F Ik . If ¢
is valid on all frames, then we say that it is valid and write I+ .

Now, you’ve certainly seen these definitions before — but if you want to understand
contemporary modal logic you need to think about them in a certain way. Above all,
please don’t automatically think of models as a collection of “worlds” together with
various “accessibility relations between worlds”, and don’t think of modalities as “non-
classical logical symbols” suitable only for coping with intensional concepts such as
necessity, possibility, and belief. Modal logic can be viewed in these terms, but it’s a
rather limited perspective. Instead, think of models as relational structures, or multi-
graphs. That is, think of a model as an underlying set together with a collection of
binary and unary relations. We use the modalities to talk about the binary relations,
and the propositional symbols to talk about the unary relations.

Remark 1.4 (Kripke models are relational structures) Let’s make this precise.
Consider a model M = (W, {R, | # € MOD},V). The underlying frame (W,{R, |
m € MODY) is already presented in explicitly relational terms, and it is trivial to
present the information in the valuation in same way: in fact M can be presented as
the following relational structure M = (W,{R, | # € MOD},{V(p) | p € PROP}).

Why think in terms of relational structures? Two reasons. The first is: relational
structures are ubiquitous. Virtually all standard mathematical structures can be
viewed as relational structures, as can inheritance hierarchies, transition systems,
parse trees, and other structures used in Al, computer science, and computational
linguistics. Indeed, anytime you draw a diagram consisting of nodes, arcs, and labels,
you have drawn some kind of relational structure. There are no preset limits to the
applicability of modal logic: as it is a tool for talking about relational structures, it
can be applied just about anywhere.

Secondly, relational structures are the models of classical model theory (see, for
example, Hodges [35]). Thus there is nothing intrinsically “modal” about Kripke
models, and we’re certainly not forced to talk about them using modal languages. On
the contrary, we can talk about models using any classical language we find useful (for
example, a first-order, infinitary, fixpoint, or second-order language). Unsurprisingly,
this means that modal and classical logic are systematically related.

Remark 1.5 (Modal logic is a fragment of classical logic) To talk about a Krip-
ke model in a classical language, all we have to do is view it as a relational structure
(as described in the previous example) and then ‘read off’ from the signature (that is,
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MOD and PROP) the non-logical symbols we need, namely a MOD-indexed collection
of two place relation symbols R, and a PROP-indexed collection of unary relation
symbols P, Q, P', Q', and so on. We then build formulas in the classical language of
our choice.

As modal languages and classical languages both talk about relational structures, it
seems overwhelmingly likely that a systematic relationship exists between them. And
in fact, the modal language (over PROP and MOD) can be translated into the best-
known classical language of all, namely the first-order language (over PROP and
MOD). Here are some clauses of the Standard Translation, a top-down translation
which inductively maps modal to first-order formulas:

ST (p) = P(z), pe PROP
STz (—p) = =8T:(p)

ST:C(SOAlﬁ) = ST:C(SO)/\STz(w)
STz({m)¢) = Fy(@Rry A STy(¢))
ST, ([rlp) = Vy(@Rzy = STy(p)).

Here x is o fixed but arbitrary free variable. In the fourth and fifth clause, the variable
y can be any variable not used so far in the translation. The clauses governing ST, are
analogous to those given for ST, ; in particular, the clauses for the modalities introduce
a new variable (say z) and so on. For any modal formula ¢, ST,(p) is a first-order
formula containing exactly one free variable (namely ), and it is easy to see that
M,w b ¢ iff M |= ST, (p)[w] (where = denotes the first-order satisfaction relation
and [w] means assign the state w to the free variable x in STy(p)). The equivalence
can be proved by induction, but it should be self-evident: the Standard Translation is
simply a reformulation of the clauses of the Kripke satisfaction definition.

There are also non-trivial links between modal logic and infinitary logic, fized-point
logic, and second-order logic; in particular, modal validity is intrinsically second-
order. For further discussion, see Blackburn, de Rijke, and Venema [1/].

In short, modal logic is not some mysterious non-classical intensional logic, and
modalities are not strange new devices. On the contrary, modalities are simply macros
that handle quantification over accessible states.

This, of course, leads to another question. OK — so we can use modal logic when
working with relational structures — but why bother if it’s really just a disguised way
of doing classical logic? I think the following two answers are the most important:
modal logic brings simplicity and perspective.

Simplicity comes in a variety of forms. For a start, modal representations are
often clean and compact: modalities pack a useful punch into a readable notation.
Moreover, modal logic often brings us back to the realms of the computable: while the
first-order logic over MOD and PROP is undecidable (whenever MOD is non-empty),
its modal logic is decidable (in fact, PSPACE-complete).

Perspective is more subtle. Modal languages talk about relational structures in
a special way: they take an internal and local perspective on relational structure.
When we evaluate a modal formula, we place it inside the model, at some particular
state w (the current state). The satisfaction clause (and in particular, the clause for
the modalities) allow us to scan other states for information — but we’re only allowed
to scan states reachable from the current state. The reader should think of a modal
formula as a little automaton, placed at some point on a graph, whose task is to explore
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the graph by visiting accessible states. This internal, local, perspective is responsible
for many of the attractive mathematical properties of modal logic. Moreover, it makes
modal representations ideal for many applications. Here’s a classic example:

Example 1.6 (Temporal logic) We’ll be seeing a lot of the bimodal language with
MOD = {F,P} in this paper: the modality (F) means “at some Future state”, and
(P) means “at some Past state”. To reflect this temporal interpretation, we usually
interpret this language on frames of the form (T, <) that can plausibly be thought of
as ‘flows of time’. For example, if we think of time as a branching structure, (T, <)
might be some kind of tree, and if we want a linear view of time, (T,<) might be
(Z,<) (the integers in their usual order). When interpreting the language on such
frames we insist that Re is <, and Rp is its converse; that is, as required, we ensure
that (F) looks forward along the flow of time, and (P) backwards.

Consider the formula (P)Mia-unconscious. This is true iff we can look back in
time from the current state and see a state where Mia is unconscious. Similarly
(FYMia-unconscious requires us to scan the states that lie in the future looking for one
where Mia is unconscious. Thus these two formulas work similarly to the English
sentences Mia has been unconscious and Mia will be unconscious: these sentences don’t
specify an absolute time for Mia’s unconsciousness (which we could do by giving a date
and time), rather they locate it relative to the time of utterance. In short, English and
other natural languages exploit the fact that human beings live in time, and modal
logic models this neatly.

This situated perspective can be lifted to more interesting temporal geometries. For
example, we could regard temporal states as unbroken intervals of time, add new
modalities such as (SUB) (meaning “at some SUBinterval of the current state”) and
(SUP) (meaning “at some SUPerinterval of the current state”). Then a formula of
the form (SUB)(F)(SUP)p means “by looking down to a subinterval, and then forward
to the future, and then up to a superinterval, it is possible to find a state where p is
true”. Halpern and Shoham [34] take this idea to its ultimate conclusion: abstracting
from the work of James Allen [1], they present a modal logic which allows all possible
relationships between two closed intervals over a linear flow of time to be explored
‘from the inside’.

Nowadays, few modal logicians regard modal logic as a non-classical logic, and they
certainly don’t feel tied to any of the traditional interpretations of modal machinery.
On the contrary, since the early 1970s modal logic has been explored as a subsystem
of various classical logics, and it is now clear that modal logic are a very special
part of classical logic. Indeed, modal languages are in many respects so natural, that
— as modal logicians love to point out — it’s not particularly surprising that they
have been independently reinvented by other research communities that make use of
relational structures. Let’s look at two well known examples.

Example 1.7 (Feature logic) Feature structures are widely used in unification-based
approaches to natural language. In essence, feature structures are multigraphs that
represent linguistic information:
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[ ]
AGREEMEQ\JASE
[ J [ J
nominative
PERSON NUMBER
[ J [ ]

1st plural

Computational linguists have a neat notation for talking about feature structures:
Attribute- Value Matrices (AVMs). Here’s an example:

PERSON st
AGREEMENT

NUMBER plural
CASE —dative

This AVM is a partial description in the above feature structure — it’s satisfied in
that structure at the root node. The AVM describes a feature structure in which the
AGREEMENT transition leads to a node from which PERSON and NUMBER transitions
lead to the information 1st and plural respectively, and if you work down the left hand
side of the previous diagram from the root you’ll find this structure. The AVM also
demands a CASE transition from the root node that does not lead to the information
dative. The feature structure depicted above also satisfies this requirement, for the
CASE transition leads to a node bearing the information nominative.

Now, this all sounds very modal — and indeed, the AVM is a notational variant of
the following formula:

(AGREEMENT) ({PERSON) Ist A (NUMBER)plural)
A {CASE)-dative

Example 1.8 (Description logic/Terminological logic) In description logic, con-
cept languages are used to build knowledge bases. An important part of the knowledge
base is called the TBox (or terminology). This is a collection of concept macros de-
fined over the primitive concept names using booleans and role names. For example,
the concept of being a hired killer for the mob is true of any individual who is a killer
and employed by a gangster, and we can define this in the description language ALC
using the following expression:

killer M IEMPLOYER.gangster

Here killer and gangster are concept names, EMPLOYER is a role name, and N is a
boolean (intersection). This expression means exactly the same thing as the following
modal formula:

killer A (EMPLOYER)gangster
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Indeed, as Schild [49] pointed out, any ALC expression corresponds to a modal for-
mula: simply replace occurrences of M by A, U by V, 3R by (R), and VR by [R] (both
formalisms typically use the symbol — to denote boolean-complement/negation, so oc-
currences of — can be left in place). This correspondence lifts to many stronger concept
languages: number restrictions correspond to counting modalities, mutually converse
roles correspond to mutually converse modalities, and commonly used role constructors
(for example, for forming the transitive closure of a role) correspond to the modality
constructors of Propositional Dynamic Logic (PDL).

Summing up, modal logic is a well-behaved and intuitively natural fragment of
classical logic. Over the past 25 years, modal logicians have explored and extended this
fragment in many ways. By introducing modal operators of arbitrary arities, they have
made it possible to work with relational structures containing relations of any arity.
By evaluating formulas at sequences of states (as is done in multidimensional modal
logic; see Marx and Venema [39]) they have generalized the notion of perspective.
By introducing logical modalities (see Goranko and Passy [33] and de Rijke [47]) they
have shown how to introduce certain forms of globality into modal logic while retaining
(and in certain respects improving) their desirable properties. Indeed, in recent work
on the guarded fragment (see Andréka, van Benthem, and Németi [2]) they have
shown that it is even possible to “export” the locality intuition back to classical logic;
this line of work has unearthed several previously unknown decidable fragments of
first-order (and other) classical logics. For a detailed account of contemporary modal
logic, see Blackburn, De Rijke, and Venema [14].

So modal logicians have a lot to be proud of. But for all these achievements,
something is missing. What exactly?

2 The Trouble with Modal Logic

Carlos Areces summed it up neatly: there is an asymmetry at the heart of modal
logic. Although states are crucial to Kripke semantics, nothing in modal syntax get
to grips with them. This leads to (at least) two kinds of problem. For a start, it means
that for many applications modal logic is not an adequate representation formalism.
Moreover, it makes it difficult to devise usable modal reasoning systems.

Example 2.1 (Temporal logic) Although the temporal language with modalities (F)
and (P) neatly captures the perspectival nature of natural language tenses, it fails to
get to grips with o linguistic fact of equal importance: many tenses are referential.
An utterance of Vincent accidentally squeezed the trigger doesn’t mean that at some
completely unspecified past time Vincent did in fact accidentally squeeze the trigger, it
means that at some particular, contextually determined, past time he did so. The nat-
ural representation, (P)Vincent-accidentally-squeeze-the-trigger, fails to capture this.

Similarly, while it’s certainly possible to abstract elegant modal logics from the work
of James Allen, such abstractions amputate a central feature of his work: reference
to specific intervals. Allen’s formalism includes the notation Hold(P,i) meaning “the
property P holds at the interval i”, and Hold plays a key role in his approach to
temporal knowledge representation. This construction is not present in the modal
logic of Halpern and Shoham.

And there are deeper limitations, centered on the notion of validity. Suppose we
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are working with the temporal language in (F) and (P). Can we write down a formula
that is valid on every transitive frame, and not valid on any others? That is, can
we define transitivity? Sure: (F){F)p — (F)p does so. OK: but can we write down
a formula valid on precisely the asymmetric frames (that is, frames (T, <) such that
Vey(x <y — y £ x))? Try what you like, you won’t find any such formula: a central
property of flows of time is invisible to modal representations.

Example 2.2 (Feature Logic) While AVM notation is related to modal logic, it
offers something new: it lets us name specific nodes in feature structures. Consider

the following AVM:
fi
SUBJ { :IG{]I;D boaor }
COMP  [SUBJ ]

The ‘tag’ names a point in the feature structure. This AVM demands that the
node we reach by following the SUBJ transition from the root is also the node we reach
by first taking a COMP transition from the root and then taking a SUBJ transition.
No matter which path we toke, we have to end up at the node tagged . For this
reason, the AVM is not satisfied on the left hand feature below (which otherwise gets
everything right) but is satisfied by the right hand feature structure:

[ ]
SUBJ COMP A \\CoMP

() o+———————»o

@ [ J
| SUBJ
% \’RED i SUBJ AGR PRED
oo S ° Yoo Y
(ii) (i)

Thus AVM notation is not a notational variant of ordinary multimodal logic: it’s
strictly stronger. So are many description logics:

Example 2.3 (Description logic) Description logic lets us reason about specific in-
dividuals — n fact, it lets us do so in two distinct ways. First, knowledge bases need
not consist of just a TBox — they can also contain an ABox. In the ABox (or
assertional component) we specify how properties and roles apply to specific individ-
wals. For example, to assert that Vincent is a gunman we add Vincent:gunman to
the ABozx, and to insist that Pumpkin loves Honey-Bunny we add (Pumpkin, Honey-
Bunny):LOVES.

Now, the assertional level is a separate level in the knowledge base, so such specifica-
tions aren’t written in the underlying concept language (in essence they’re statements
in a constraint language that manipulates formulas of the concept language). But some
description languages push matters further: just as feature logic does, they allow ref-
erence to individuals to be integrated into the underlying representation formalism
itself, thus allowing assertions about individuals to be integrated into the TBox. This
is done via the one-of operator O. The notation O(Jules,... ,Vincent) picks out one
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of the individuals Jules, ..., Vincent, and O(Mia) picks out Mia. In short, we now
have a concept language rich enough to refer to specific individuals. Such a concept
language is not a notational variant of ordinary multimodal logic, or even multimodal
logic enriched with (say) counting modalities and PDL-like constructs: it offers a novel
form of expressivity.

There is a method (introduced in the late 1960s by Arthur Prior) which allows ref-
erence to states to be incorporated into modal logic. But although Prior’s idea has
attracted a handful of advocates (see the Guide to the Literature at the end of the
paper) it’s never been part of the modal mainstream. On the other hand, descrip-
tion logicians such as De Giacomo [22] have realized its relevance. This method —
hybridization — is central to the paper, and I’ll introduce it shortly.

In short, the asymmetry underlying orthodox modal logic translates into obvious
weaknesses as a representation formalism. The same asymmetry leads to problems
with reasoning. Until recently, modal proof theory was a relatively neglected topic.
Traditionally, modal logicians have been content to formulate modal proof systems
as Hilbert-style axiomatizations, this being enough to get on with the topics that
interested them with a minimum of syntactic fuss. But it resulted in few usable modal
proof systems available, and little in the way of general proof-theoretical results.

An important exception to this was Fitting’s [25] groundbreaking work on prefized
tableau systems. Fitting’s work can be viewed as a precursor to Gabbay’s [26] work
on labelled deduction. In essence, Gabbay’s proposal is to develop a metalinguistic
algebra of labels that can act as the motor for modal deduction. Another recent
general approach, display calculus (see Kracht [37]), though very different from la-
belled deduction, also makes use of novel metalinguistic machinery. Display calculus
is an extension of sequent calculus which introduces additional notation to allow us to
freely manipulate object language formulas (in much the same way as a school child
rewrites polynomial equations).

Now, first-order proof theory does not require this kind of metalinguistic support.
This is because first-order languages are expressive enough to support the key deduc-
tion steps at the object level. If we find a representation formalism that is not capable
of doing this, but needs to be augmented by a rich metatheoretic machinery, this is a
signal that something is missing. Modal logic seems to be such a formalism — what
exactly does it lack?

If we look at the Fitting-Gabbay tradition, an answer practically leaps off the page:
we need to be able to deal with states explicitly. We need to be able to name them,
reason about their identity, and reason about the transitions that are possible between
them. In essence, labelled deduction in its various forms supplies metalinguistic equip-
ment for carrying out these tasks, and this leads to modally natural proof systems.
In particular, labelled deduction successfully captures the key intuition underlying
Kripke semantics, that of a little automaton working it’s way through a graphlike
structure — except that the automaton’s deductive task is to try and build such a
structure, not explore a pre-existing one.

Summing up, whether we think about representation or reasoning the conclusion
is the same: modal logic’s lack of mechanisms for dealing with states explicitly is a
genuine weakness.
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3 Hybrid Logic

Hybrid languages provide a truly modal solution to this problem. Modal logic may
not be perfect — but it’s certainly a most remarkable fragment of classical logic. How
can we add reference to states without destroying it?

Let’s go back to basics. Modal logic allows us to form complex formulas out of
atomic formulas using booleans and modalities. There’s only formulas, nothing else.
So if we want to name states and remain modal, we should find a way of naming
states using formulas. We can do this by introducing a second sort of atomic formula:
nominals. Syntactically these will be ordinary atomic formulas, but they will have
an important semantic property: nominals will be true at exactly one point in any
model; nominals ‘name’ this point by being true there and nowhere else. Let’s make
this idea precise — and improve it in one respect, by adding satisfaction operators.

Definition 3.1 (Hybrid multimodal languages) Let NOM be a nonempty set dis-
joint from PROP and MOD. The elements of NOM are called nominals, and we typ-
ically write them as i, j, k and . We define the hybrid multimodal language (over
PROP, NOM, and MOD) to be the:

WFF:=i|p|-p oA |oVi|e =] (m)e][r]e| Q.
For any nominal i, we shall call the symbol sequence @; a satisfaction operator.

Remark 3.2 (Nominals and satisfaction operators) As promised, nominals are
formulas. What are satisfaction operators? In essence, a simple way of further ez-
ploiting the presence of nominals: Q; means “go to the point named by i (that is, the
unique point where i is true) and see if  is true there”. That is, Q;p is a way of as-
serting — in the object language — that ¢ is satisfied at o particular point. Formulas
of the form Q;p and —-Q;p are called satisfaction statements.

Definition 3.3 (Hybrid models, satisfaction, and validity) A hybrid model is
a triple (W,{R, | m € MOD},V) where (W,{R, | # € MOD}) is a frame and V is
a hybrid valuation. A hybrid vaeluation is a function with domain PROPUNOM and
range Pow(W) such that for all nominals i, V (i) is a singleton subset of W. We call
the unique state in V(i) the denotation of i. We interpret hybrid languages on hybrid
models by adding the following two clauses to the Kripke satisfaction definition:

Myw ki iff weV(i), wherei e NOM
M,wlk Qo iff M,w' Ik @, where w' is the denotation of i.

If ¢ 1is satisfied at all states in all hybrid models based on a frame F, then we say
that ¢ is valid on F and write F |k . If ¢ is valid on all frames, then we say that it
s valid and write I+ .

Remark 3.4 (Hybrid logic is modal) Hybrid languages contain only familiar modal
mechanisms: nominals are atomic formulas, and satisfaction operators are actually
normal modal operators (that is: for any nominal i, Q;(¢ — ¥) — (Q;p — Q1)) is
valid; and if ¢ is valid, then so is Q;p).

Moreover, like multimodal logic, hybrid logic is a fragment of classical logic: indeed,
it is easy to extend the Standard Translation to hybrid logic. Divide the first-order
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variables into two sets such that one contains the reserved variable x and the variables
used to translate familiar modalities, while the other contains a first-order variable x;
for every nominal i. Define:

ST, (i) = xz=ux;,1€ NOM
ST5(Q;p) (8T (p))[wi/ ]

Clearly M,w Ik ¢ iff M |= ST, (0)[w,V (3),... ,V(j)], wherex, x;, ... z; are the free
variables in ST,(p). Nominals correspond to free variables, and (as the substitution
[z;/x] makes clear) satisfaction operators let us switch our perspective from the current
state to named states.

So far, so modal — but what about computational complexity? No change. As
Areces, Blackburn and Marz [4] show, hybrid logic is (up to a polynomial) no more
complex than multimodal logic: deciding the validity of hybrid formulas is a PSPACE-
complete problem.

Remark 3.5 (Hybrid logic is hybrid) Any modal logic is a fragment of classical
logic — but hybrid logic takes matters a lot further. The near-atomic satisfaction
statement @;j asserts that the states named by i and j are identical, thus we have
incorporated part of the classical theory of equality. Similarly Q;{w)j means that the
state named by j is an Ry-successor of the state named by i, so we’ve incorporated
the classical ability to make assertions about the relations that hold between specific
states. Thus hybrid logic is a genuine hybrid: it brings to modal logic the classical
concepts of identity and reference.

With this extra classical power at out disposal, it is straightforward to fix the repre-
sentational problems noted in the previous section.

Example 3.6 (Temporal logic) First, although Vincent accidentally squeezed the
trigger can’t be correctly represented in the ordinary temporal language in (F) and (P)
, it can be with the help of nominals: (P)(iAVincent-accidentally-squeeze-the-trigger)
locates the trigger-squeezing not merely in the past, but at a specific temporal state
there: the one named by i.

Second, if we want to work with interval-based temporal models, we can now do so
in o way that is faithful to the work of James Allen: the satisfaction statement Q;p
is a clear analog of Allen’s Hold (i, ) construct. More on this in Section 6.

Third, we also solve the deeper issue concerning definability: © — —(F){(F)i defines
asymmetry (that is, it is valid on all asymmetric frames and no others). More on this
in Section 5.

Example 3.7 (Feature logic) Nominals correspond to tags. Consider once more

the problematic AVM:
AGR  foo
SUBJ [ PRED bar }
COMP  [SUBJ ]

This corresponds to the following LN wff:

(suBJ) (i A {AGR)foo A (PRED)bar)
A {COMP){SUBJ)i
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And in fact, AVM notation is essentially a two-dimensional notation for multimodal
logic with nominals. For more on feature logic as hybrid logic, see Blackburn [10],
Blackburn and Spaan [17], and Reape [45, 46] (and see Bird and Blackburn [9] for
related ideas in phonology).

Example 3.8 (Description Logic) The TBozes of the concept language ALCO (that
is, ALC enriched with the O operator mentioned in Example 2.8) is a notational
variant of the @-free fragment of hybrid multimodal logic. First, every nominal cor-
responds to an expression of the form O(i). Conversely, every ALCO expression of
the form O(i,... ,j) corresponds to the formula iV ---V j.

Furthermore, @ has o natural description logic interpretation. The ABozx specifica-
tion i:p corresponds to the satisfaction statement Q;p, and the specification (i,j) : R
corresponds to @;(R)j. But whereas ABox specifications are constraints stated at a
separate representational level, their hybrid equivalents are part of the object language.
In effect, hybrid multimodal logic is an extension of ALCO which fully integrates
ABoz specifications into the concept language (without moving us out of PSPACE).
For more on description logic as hybrid logic, see De Giacomo [22], Blackburn and
Tzakova [19], Areces and de Rijke [6], and (in spite of its title) Areces, Blackburn and
Marz [3].

4 Hybrid Reasoning

Nominals and @ make it possible to create names for states, and to reason about
state identity and the way states are linked. This give us enough classical power in
the object language to capture the modal locality intuition (recall the little automaton
exploring/building graphs) without requiring elaborate metatheoretic proof machin-
ery. Hybrid deduction is a form of labelled deduction — but it’s labelled deduction
that has been internalized into the object language. I’ll formulate hybrid reasoning
as an unsigned tableau system. We’ll need two groups of rules. Here’s the first:

@y —Q,—p
—Qgp . Q,p .
@s(ﬂo A "p) _‘@3(90 A ¢)
T M ~Gp [ @, N
Q9
@,Qup —Q@Q;Qp
A ap T
Q (m)ep —Q (m)p Qg (m)t
Q,(m)a ™) =y [~(m)]
Qqp
Gilrlp_Qumt (., “Glrle
Q@ Qy{m)a
@,

In these rules, s and ¢ are metavariables over nominals, and a is a metavariable over
new nominals (that is, nominals not used so far in the tableau construction). The
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rules for V and — are obvious variants of the rules for A (we’ll see both rules when
we give some examples).

Remark 4.1 (The first group internalizes the satisfaction definition)

These rules use the resources available in hybrid logic to mimic the Kripke satisfaction
definition: they draw conclusions from the input to each rule (the formula(s) above
the horizontal line) to the output (the formula(s) below the line). For example, the
A-rule says that if ¢ A is true at s, then both ¢ and ¢ are true at s, while it’s
dual rule =A (a branching rule) says that if © A is false at s, then either ¢ or ¢
is false at s. Note that both the [r]-rule and the —~(m)-rule take two input formulas,
one of which (the minor premiss) is a formula of the form Q(w)t. For example, the
[7]-rule says that if a pair of formulas of the form Qr]e and Qg (m)t can be found
on some branch of the tableau, we are free to extend that branch by adding Qi — a
clear reflection of the Kripke semantics for [n]. Already first-order ideas are creeping
into the system: this rule trades on the fact that hybrid logic is strong enough to make
statements about state succession (using near-atomic satisfaction statements of the
form Q(m)t).

But it is with the (w)- and [r]-rules that first-order ideas really make themselves
felt. What do we know when a formula of the form (m)p is true at s? The Kripke
satisfaction definition gives us the answer: we know that (1) we can make an R,
transition from s to some state, and (2) at this R;-successor state, ¢ is true. The
(w)-rule captures this idea: it tells us to (1) introduce a new nominal a to name the
successor state, and (2) insist that ¢ is true at a. Recall that in first-order reasoning,
existential quantifiers are eliminated by introducing new parameters. In effect, the
(m)-rule uses nominals to exploit this first-order idea. Incidentally: we don’t apply
the (m)-rule to formulas of the form Qg (w)e where ¢ is a nominal. Doing so is
pointless, for it would simply create a new name for a state that already had a name.

But we need a second group of rules. Nominals and @ come with a certain amount
of logic built in: they provide theories of state equality and state succession. Just
as we need to add special rules or axioms to first-order logic to handle the equality
symbol correctly, we need additional mechanisms for nominals and @:

[s on branch] Q,t Qup Qg(m)t Q'

@ss [Ref] @st [Sym] @SSO [Nom] @3<7T)tl [Bridge]

Remark 4.2 (The second group is essentially a classical rewrite system)
The Ref rule says that if a nominal s occurs in any formula on a branch, then we are
free to add Qs to that branch; this is clearly an analog of the first-order reflexivity
rule for =, just as the Sym rule is an analog of the first-order symmetry rule for =.
What about transitivity? From Qt and Qit' we should be able to conclude Qzt'. But
this is a special case of Nom, namely when ¢ is chosen to be a nominal t'. More
generally, Nom ensures that identical states carry identical information, while Bridge
ensures that states are coherently linked. In first-order terms, these rules ensure that
state identity is not merely an equivalence relation but a congruence.

As with any tableau system, we prove formulas by systematically trying to falsify
them. Suppose we want to prove . We choose a nominal (say ¢) that does not
occur in ¢ (this acts as a name for the falsifying state that is supposed to exist),
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prefix ¢ with —@;, and start applying rules. If the tableau closes (that is, if every
branch contains some formula and its negation), then ¢ is proved. On the other
hand, suppose we reach a stage where we have applied the appropriate connective
rule to every complex formula (or in the case of [r]-formulas, we have applied the
[r]-rule to every pair of formulas of the form Q[r]p, @Q(m)t on the same branch; and
analogously for —(m)-formulas) and no application of the rewrite rules yields anything
new. If the tableau we have constructed contains open branches (that is, branches
not containing conflicting formulas), then ¢ is not valid (and hence not provable), and
the near-atomic satisfaction statements on the open branch specify a countermodel.

Example 4.3 (A standard multimodal validity) Let’s start with an example from
ordinary multimodal logic: (m)(pV q) — (m)p V (w)q is valid (for any modality {)),
hence this formula should be provable. Here’s how to do it:

1 ﬂ@ (<7r)(p Vq) = (mp V(m)q)
2 Qi{m)(pV q) 1,-—
2! =Q;({m)p V {m)q) Ditto
3 —@Q;{m)p 2 =V
3 -Q;(n)q Ditto
4 Q; <7T>] 2, (7r)
4 Q;(pVq) Ditto
5 -Q;p 3,4, ~(m)
6 -Qjq 3,4, ~(m)
7 Q;p | Qjq 4’ v
T 5,7 K 6,7 K

In short, we start with one initial state (namely i) and then use the tableau rules
to reason about what must hold there. At line / we use the (n)-rule to introduce a
new state name, namely j. We continue to reason about the way information must
be distributed across these two states until we are forced to conclude that there is no
coherent way of doing so.

Example 4.4 (A genuinely hybrid validity) The previous example gives only the
barest hint of what the system can do. Here’s a more interesting example, which shows
that hybrid reasoning not merely makes use of nominals and @, but also gets to grip
with the logic of state identity and succession they embody.

Suppose we’re working with a language with three modalities. To emphasize the
geometric intuitions underlying hybrid reasoning, let’s call these (VERT), (HOR) and
(DIAG) (for wvertical, horizontal and diagonal) respectively. Now, (HOR)(VERT)(i A
p) A (DIAG)i — (DIAG)p is valid (for there’s only one state named i) and we can prove



352 A Hybrid Logic Manifesto

it as follows:

1 —Q; ((HOR)(VERT)(% A p) A (DIAG)i — (DIAG)p)

2 Q; ((HOR)(VERT) (i A p) A (DIAG)i) 1,-—

2 —Q; (DIAG)p Ditto

3 Q@; (HOR)(VERT)(i A p) 2,

3 @, (DIAG)i Ditto

4 Q; (HOR)k 3, (HOR)

4/ Q@ (VERT)(% A p) Ditto

5 Q@ (VERT)! 4', (VERT)

5’ @;(i A p) Ditto

6 Qyi 5 A

6 Q;p Ditto

7 Q;l 6, Sym

8 Q;p 6’,7, Nom

9 -Q;p 2,3, —(D1AG)
X 8,9 X

Think in terms of a graph-building automaton: it creates an initial state named 4,
generates successor states j, k and [, and reasons about the way information must
be distributed over them wuntil it becomes clear that there is no way to construct a
countermodel.

Remark 4.5 (There are other approaches) I have presented hybrid reasoning as
an unsigned tableau system, but we are mot forced to do this, and the underlying
graph construction intuition come through in a range of proof styles. For example,
Seligman [52] presents sequent and natural deduction systems with much the same
geometrical flavor (indeed Seligman motivates his rules by discussing what a logic of
spatial locations should look like). The same is true of Tzakova’s [55] Fitting-style
indezed tableau approach, Demri’s [23] sequent system for the (F) and (P) language
enriched with nominals but without @, and Konikowska’s [36] sequent based approach
to the logic of relative similarity.

One last point. The link with orthodox modal labelled deduction should now be
clear — but there is also a link with description logic: hybrid reasoning is a form of
ABox reasoning. The tableau system manipulates satisfaction statements, which are
essentially ABox specifications (recall Example 3.8).

5 Other Frame Classes

The tableau system is (sound and) complete in the following sense. Let us say that a
formula ¢ is tableau provable iff there is a closed tableau with —=@;y as its root (where
i is a nominal not occurring in ¢). Then:

Theorem 5.1 ¢ is tableau provable iff ¢ is valid.

PROOF. Soundness is straightforward. A completeness proof for unimodal languages
is given in Blackburn [13] using a Hintikka set argument; it extends straightforwardly
to multimodal languages. | |

So far so good — but valid means “true in all states in any hybrid model based
on any frame”, and often we only care about models based on frames with certain
properties, and we want to reason in the stronger logics such frames give rise to.
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In many cases hybrid reasoning adapts straightforwardly to cope with such de-
mands. In particular, if we use pure formulas (that is, formulas containing no propo-
sitional variables) there is a straightforward link between defining a class of frames
and reasoning about the frames in that class. A formula ¢ defines a class of frames
F iff ¢ is valid on all the frames in F and falsifiable on any frame not in F. A formula
defines a property of frames (such as transitivity) iff it defines the class of frames with
that property. So: what can pure formulas define?

Example 5.2 (Pure formulas and frame definability) Consider the temporal lan-
guage in (F) and (P). Using pure formulas, we can define a number of properties
relevant to temporal logic:

@;~(F)i Vz—(zRezx) (Irreflezivity)

@Q;~(F)(F)i Vazy(xRry — —yRrx) (Asymmetry)
Q;[F]((F)i — 9) Vey(zRry AyRrx — x = y) (Antisymmetry)
(F){F)i — (F)i Vaeyz(zRry A yRrz — REz) (Transitivity)
(FYi = (F){F)i Vzy(xRry — Jz(xRrz A 2Rry)) (Density)
@;(F)j v @5 v @;(F)i Vey(xRry V & =y V yRrz) (Trichotomy)

The properties just listed only tell us about R — but a far more basic property of
frames is needed for temporal logic, namely that Rr and Rp be mutually converse
relations. This can also be defined using pure formulas. First note that the following
relations between Rr and Rp are definable:

Q;[F{P)i Vzy(xRey — yRpx)
Q@;[P){F)i Vzy(xRpy — yRrx)

It follows that the conjunction @Q;[F(P)i A Q;[P]{F)i defines those frames in which
Rr and Rp are mutually converse. And once we have this fundamental interaction
defined, we can stop thinking in terms of separate Re and Rp relations, instead viewing
(F) as looking forward along some binary relation < (the “flow of time”) and (P) as
looking backwards along the same relation. This enables us to define further temporally
interesting properties:

(P)(F)i Vrzydz(z < x A z < y) (Left-Directedness)
Q;((F)T —=(F)[P][P]—%) Vzy(r<y—Iz(z<z A ~Fw(z<w<z))) (Right-Discreteness)

I mentioned in Example 2.1 that asymmetry was not definable in ordinary temporal
logic. In fact, with the exception of the mutually converse property, transitivity, and
density, none of the properties just defined are definable in orthodox temporal logic.
Hybrid languages fill a genuine expressive gap when it comes to defining frames.

Remark 5.3 (All we need are satisfaction statements) Note that if a formula
@ defines a class of frames F, then so does the satisfaction statement Q;p, where i is
any nominal not occurring in p. The relevance of this for tableaux will soon be clear.

So nominals and @ enable us to define interesting classes of frames, and moreover
every definable class of frames is definable using a satisfaction statement. This is
pleasant — but the really important point is the way these frame defining powers
interact with hybrid reasoning. Roughly speaking, if a pure formula a defines a class
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of frames F, and we are free to introduce a as an axiom into our tableau proofs, then
the axiom-enriched tableaux system is guaranteed to be complete with respect to F.
For pure formulas, definability and completeness match perfectly.

More precisely, let A be a countable set of pure satisfaction statements, and H+A
be the tableau system that uses the formulas in A as axioms. That is, for any « in

A, and any nominals j, ji,...,j, that occur on a branch of a tableau, we are free to
add « or afj1/i1,...,Jjn/in] to the end of that branch (here 4; ... ,i, are nominals
in a, and a[j1 /i1, .. ,Jn/in] is the pure satisfaction statement obtained by uniformly

substituting nominals for nominals as indicated).

Theorem 5.4 Let A be a finite or countably infinite set of pure satisfaction state-
ments, and let F be the class of frames that A defines (that is, the class of frames on
which every formula in A is valid). Then H+A is complete with respect to F.

PROOF. See Blackburn [13] for the unimodal case. The multimodal case is a straight-
forward generalization. [ |

Example 5.5 (An application in temporal logic) Suppose we are working with
the (F) and (P) temporal language, and that we are interested in models with a tran-
sitive flow of time. Which axioms guarantee completeness?

The following suffice. First, to ensure that (F) and (P) really are mutually converse,
add the axioms Q;[F](P)i and Q;[P](F)i; we know from Ezample 5.2 that together these
formulas define the converse property, and both are pure satisfaction statements. Now
to guarantee transitivity. The pure formula (F)(F)i — (F)i defines this property. This
is not a satisfaction statement, but Q;((F)(F)i — (F)i) is, and this defines transitivity
too.

What can we prove in this system? Here’s an illustration. Note that for any choice
of formula ¢ (not just pure formulas), (P){(P)p — (P)y is valid on the class of frames
our axioms define. Thus, by Theorem 5.4, we should be able to prove any instance of
this schema. And we can. In what follows i, j, and k, are chosen to be nominals not
occurring in @:

1 ~@i((P)(P)p — (P)o)

2! —|@1'<P>(p Ditto

3 Q;(P)j 2,(P)

3/ Q; (P)y Ditto

4 @, (P)k 3, (P)

4! Qrp Ditto

5 Q; [PI(F)j Aziom

7 Q;[P](F)¢ Aziom

8 Q; (F)i 3,7,[P]

9 Qg ((F)(F)i — (F)3) Aziom

10 —@p (F)(F)i | @y (F)i 9,

11 6, 10,—|(F> ﬁ@j(F)i @k[F]<P>k Aziom

12 8,11 @;(P)k 10,11, [F]

13 -Qpp 2,12, ~(P)
T 47,13 H

Once again, it is best to think of this proof in terms of a little graph-building automa-
ton: it stepwise generates a graph and shows (now with the help of the axioms) that
there is mo coherent way to decorate the resulting structure with information.



5. OTHER FRAME CLASSES 355

In effect, Theorem 5.4 tells us that we can analyze hybrid reasoning in terms of a
basic proof engine (such as our tableau rules) together with an axiomatic theory (at
least so long as the axiomatic theory is formulated using only pure formulas). This is
the way things work in first-order logic, and the resemblance is not coincidental. First,
recall that the Standard Translation for hybrid languages maps nominals to free first-
order variables. It follows that any pure formula ¢ defines a first-order class of frames
(namely the class defined by the universal closure of ST (p)). Second, analogous the-
orems have been proved for various hybrid languages, and although the completeness
proofs differ in many respects, they typically have one ingredient in common: they
use nominals to integrate the standard first-order model construction technique (the
use of Henkin constants) with the standard modal technique (canonical models). As
a number of authors emphasize (in particular Bull [21], Passy and Tinchev [41], and
Blackburn and Tzakova [20]), such proofs show that hybrid logic genuinely blends
modal and classical ideas.

Remark 5.6 (Related work) Many of the same technical themes (including an es-
sentially identical model construction technique) can be found in Basin, Matthews,
and Vigano’s [7] approach to labelled deduction for orthodoxr modal languages. The
links between their work and the hybrid tradition deserves further exploration (for a
start, many of their proof-theoretical insights may generalize to hybrid languages).
Other general completeness results covering first-order definable frame classes have
been proved for hybrid languages, such as Demri’s [23] extension of the modal Sahlquist
theorem for his nominal-driven temporal sequent system.

But the emphasis on first-order aspects of hybrid logic also point to the limitations
of the previous theorem: it doesn’t cover second-order frame classes — and many such
classes are definable with the aid of propositional variables.

Example 5.7 (Second-order frame classes) By making use of mized formulas (that
is, formulas containing both nominals and ordinary propositional variables) we can
define 7, the integers in their usual order, up to isomorphism; this cannot be done in
first-order logic.

The key observation is due to van Benthem [8], who points out that the simple (F)
and (P) language can almost define Z. As he notes, the formula

([PI([Plp = p) = ((P)[P]p = [P]p)) A ([FI([F]p = p) = ((F)[Flp = [F]p))

(a bidirectional variant of the Lob formula used in modal provability logic) defines Z
up to isomorphism on the class of strict total orders without endpoints (that is, this
Léb variant is valid on a frame (T, <) that is a strict total order without endpoints iff
(T, <) is isomorphic to Z.)

But it follows from standard modal results that we can’t define strict total order
without endpoints using only propositional variables — and this is where nominals
come to the rescue. We have already seen that there are (pure) formulas defining
the mutual converse property of (F) and (P), transitivity, irreflexivity and trichotomy.
Furthermore, the formulas (F)T and (P)T ensure that there are no endpoints. So the
congunction of all these (pure) formulas defines the class of strict total orders without
endpoints — and hence conjoining the Léb variant yields o (mized) formula valid on
precisely the frames isomorphic to Z. In a similar way, using a mized formula it is
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possible to define N, the naturals in their usual order, up to isomorphism; see Black-
burn [11] for details. The second-order aspects of hybrid languages deserve further
study.

The result has another limitation: it gives no computational information. While the
basic satisfaction problem for hybrid languages is PSPACE-complete, adding further
axioms can have a wide range of effects: they may lower the problem into NP, leave it
in PSPACE or lift it to EXPTIME (see Areces, Blackburn and Marx [3] for examples
of all three possibilities). Nor is it difficult to devise axioms which result in logics
with undecidable satisfaction problems. So the previous result tells us nothing about
proof search or termination: it simply draws attention to a group of logic which are
well-behaved from the perspective of completeness theory. It may well be that proof-
theoretical and computational insights from the labelled deduction and description
logic communities have a role to play in analyzing these logics further.

6 Binding Nominals to States

From the perspective of the Standard Translation, adding nominals to a modal lan-
guage is in effect to add free variables over states. This immediately suggest a further
extension: why not bind these “free variables”, thus giving ourselves access to even
more expressive power? I’ll give a brief sketch of such logics, and then turn to the
issue that interests me here: why they are relevant to knowledge representation.

Example 6.1 (Losers, jerks, and politicians) Let’s jump into the realms of pop-
psychology and define a loser to be someone with no self-respect. Now, we can’t define
this concept in the hybrid logics we have seen so far; the closest we get is:

i A ~(RESPECT)i.

This says that a specific individual i lacks self-respect. But we want more: we want
a formula that is true at precisely those nodes (individuals) which lack a reflexive
RESPECT arc. We can get what we want by binding i out:

Jz(x A —~(RESPECT)x).

This sentence is true at precisely those those nodes at which it is possible to bind x
to the current state, but impossible to loop back to the current state via the RESPECT
relation.

Two remarks. First, the idea of binding nominals to the current state is so impor-
tant in hybrid logic that a special notation (namely ) has been introduced for it. So
the previous sentence would normally be written:

2.~ (RESPECT)zx.

Second, as these examples illustrate, orthodox variable notation (x, y, z, and so on)
is usually used for bound nominals.
OK — let’s now define a jerk to be an idiot who admires himself:

idiot A | z.(ADMIRES)z.
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This sentence is satisfied at precisely those nodes which (1) have the idiot property,
and (2) from which it is possible to take a reflexive step via the ADMIRES relation.

Finally, let’s define a politician as a smooth talker such that everyone he talks to
mistrusts him:

Jz.(smooth-talker A Vy((TALKS-TO)y — —@, (TRUSTS)zx).

Note the way the Q, switches the perspective from the node x (the politician) to his
audience.

I won’t give a precise definition of the syntax and semantics of hybrid languages with
V and 3 here (you can find all this in Blackburn and Seligman [15, 16] or Blackburn
and Tzakova [18, 19]). The previous examples tell you pretty much everything you
need to know, and the discussion that follows should clarify things further.

Remark 6.2 (We now have first-order expressivity) Our new hybrid logic is strong
enough to express any first-order concept. Here’s the Hybrid Translation from first-
order representations to our new hybrid logic:

HT(zRy) = Qu(n)y

HT(Pzx) = @Qp

HT (~p) = ~HT(yp)
HT(pAy) = HT(p) NHT(Y)
HT (Fvy) = FwHT(p)

HT (Vvy) = YoHT(yp).

But although we can jump straight up to full first-order power, we don’t have to.
For a start, the use of @ in the hybrid translation is crucial. If we work with the
@-free sublanguage, binding nominals to states with 3 and V does not yield full first-
order expressive power; for a counterexample, see Proposition 4.5 of Blackburn and
Seligman [15]. Hybrid logic decomposes the action of the classical quantifiers into
two subtasks: perspective-shifting (performed by @) and binding (performed by the
hybrid binders 3 and V).

Moreover, we’ve seen that there is a useful restricted form of these binders, namely
J. Some recent papers have explored hybrid logics with a primitive | binder (without
Jor V), and it turns out that such logics characterize the notion of locality; see Areces,
Blackburn, and Marx [4].

Remark 6.3 (But even local binding is complex) Be warned: | may seem sim-
ple, but it’s not. Even without Q (let alone V or 3, which are obviously powerful) it
has an undecidable satisfaction problem. A detailed analysis is given in Areces, Black-
burn, and Marz [5].

Why is this? The following result (taken from Blackburn and Seligman [15]) may
help the reader see why local binding is so powerful. We’'ll see — using a spypoint
argument — that a hybrid language containing | and just a single diamond lacks the
finite model property. Let SCID/ be the conjunction of the following formulas:

S z A =(R)z A (R)—z A [R[(R)z
C  [RIRy.(mz = (R)(z A (R)y))
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I [R] Ly.~(R)y
D[RRz

4 [RIy-R)(zARI(R) (=2 A (R)y = (R)y)))

Note that these formulas are pure, and that | x.SCID/ is a sentence. Moreover, note
that this sentence has at least one model. For let (w,<) be the natural numbers in
their usual order, and suppose s € w (s is the spypoint). Let N* be the model bearing
a single binary relation R defined as follows: W is wU {s}, R is < U{(n,s), (s,n) :
n € w}, and the valuation V is arbitrary. Clearly N*, s |kl z.SCIDJ.

Obuviously N¢ is an infinite model. In fact any model M = (W, R, V) for | 2.SCID/
is infinite. For suppose M,s |+ £.SCID/. Let B = {b € W : sRb}. Because S is
satisfied, s ¢ B, B # (), and for allb € B, bRs. Because C is satisfied, if a # s and a
is an R-successor of an element of B then a is also an element of B. As I is satisfied
at s, every point in B is irreflexive; as D is satisfied at s, every point in B has an
R-successor distinct from s; and as 4 is satisfied, R is a transitive ordering of B.
So B is an unbounded strict partial order, thus B is infinite, hence so is W. So the
ability to bind locally really does give us the power to see a lot of structure. And this
power leads to undecidability (we can use spypoints to gaze upon the representation
of some undecidable problem, such as an unbounded tiling problem).

Thus nominal binding offers (lots!) of new representational power — but how do
we reason?

Remark 6.4 (V and 3 have classical tableau rules) To cope with hybrid logic en-
riched with Y and 3, we add the following rules to our tableau system. Note their form:
they are the classical tableaux rules for existential and universal quantifiers:

—Q 3z Q@,3zp
—Qsplt /2] Q,pla/z]
-Q@Q,Vrp Q,Vry
—Q,pla/7] Q,pt/2]

(Important: recall that a stands for a new nominal.) But while the rules are essentially
classical, don’t forget that the underlying language is different (after all, V and 3 bind
formulas!). So as well as being able to prove all the standard classical quantificational
principles (for example, Vx(p — ) — (¢ — Vb)), where x does not occur free in
) we can also prove intrinsically modal principles. For example, xx is valid (this
says: it is always possible to bind a variable to the current state). We can prove it as
follows:

1 —@ﬁxm

2 @y 1,3

3 @,’i Ref
2, 3

These rules give us a complete deduction system for hybrid logic with ¥ and 3. More-
over, Theorem 5.4 extends to these systems: adding pure azioms yields a system
complete with respect to the class of frames the axioms define. As before, “pure” sim-
ply means “contains no propositional variables”, so we are free to make use of V and
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3 in our axioms. It follows (with the help of the Hybrid Translation) that we have a
general completeness result that covers any first-order definable class of frames. Rules
for | can be found in Blackburn [13].

It’s time to turn to the link with knowledge representation. I’ll approach this topic
via James Allen’s classic work on temporal representation.

Example 6.5 (Allen style representations) The core of Allen’s system is an or-
thodox first-order theory of interval structure to which the metapredicate Hold has
been added: Hold(P,4) asserts that property P holds at the interval i.

Allen then goes on to elaborate his account of properties. He introduces function
symbols suggestively named and, or, not, exists, and all, for combining property sym-
bols, together with axioms governing them: for example

Hold(and(P,Q),i) <> Hold(P,i) A Hold(Q, ).

It’s clear Allen wants an ‘internal’ logic of terms that mirrors the ‘external’ logic of
formulas. To put it another way, although he represents properties using terms, he
wants them to behave like formulas.

This aspect of Allen’s system has been criticized (some of the axioms governing the
logical functions are rather odd; furthermore, as the structure of property terms is
never fully specified, it’s rather unclear what can and cannot be done with them; see
Turner [54] and Shoham [53]). But I'm not so much interested in the details as the
general strateqgy — for this is now standard in Al

For example, if you look at Russell and Norvig [48] (in particular, the discussion of
ontological engineering in Chapter 8) you’ll see that Allen’s approach has been gen-
eralized into a multistep methodology: (1) start with a first-order language; (2) reify
the language heavily (that is, treat categories as individuals); (3) add metapredicates;
and (4) when handling temporal aspects of ontology, induce boolean structure on the
terms by adding and axiomatizing the logical functions and, or, and not (exists and
all are not discussed).

Why is the methodology pioneered by Allen so popular? In my view, the point is the
following. Knowledge representation is ultimately about representing information in
a usable form — and this means bringing a variety of information types into a precise
framework in which it can be manipulated as flexibly as possible. In essence, Allen’s
strategy is to start with first-order logic (because it’s well understood) and then to
mould it to the requirements of knowledge representation. Heavy use of reification
and metapredicates allows general statements about a wide range of category types
to be made. Logical functions are an attempt to soften the rigid distinction first-
order logic draws between terms (which code referential information) and formulas
(which code other types of information), thereby making more flexible representations
possible. It’s an interesting strategy — but it’s not the only one.

Why not start with the intuition that all types of information should be treated
democratically — or more accurately, polymorphically? This is the intuition behind
hybrid logic. Hybrid logic begins with the observation that we can freely combine
referential and non-referential information if we represent both types of information
as formulas. Because this is our starting point, we don’t need to introduce special
logical functions and axioms to govern them — there is no term/formula distinction:
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the standard connectives are responsible for combining all information right from the
start. (Note that @;(p A ¢) +» @;p A @Q;q, the hybrid analog of Allen’s axiom for the
and function, isn’t something extra that needs to be stipulated: it’s just a validity of
hybrid logic, and can easily be proved in the basic tableau system.) Nor is there any
mystery about what “property terms” are: Allen seems to have wanted properties to
have a formula-like structure, and of course, that’s exactly the form all representations
take in hybrid logic. And binding nominals with V and 3 (which seems to correspond
to Allen’s intentions regarding the logical functions exists and all) will take us all the
way up to first-order expressivity (if that’s where we want to go).

7 The Sorting Strategy

In horticulture, hybrids are crossbreeds between distinct but related strains: ideally
they combine the desirable properties of the parent strains in interesting new ways.
Hybrid logic is certainly hybrid in this sense. Enriching modal logic with nominals
and @ leads to systems that draw on both modal and first-order logic: we retain the
locality and decidability of modal logic, gain the ability to name states and reason
about their identity and their interrelationships, and (via nominal binding) open a
novel route to first-order expressivity.

But hybrid logic is also a sociological hybrid: it’s a meeting place for ideas from
many traditions. We’ve seen that feature logic, description logic, and labelled de-
duction have independently developed key ideas of hybrid logic, and I’ve argued that
the Allen-style ontological engineering languages can be viewed as strong hybrid lan-
guages. In short, a number of research communities, faced with similar problems
(how best to represent and reason about graphlike structures) have come up with
similar answers independently. Not only do they draw (consciously or unconsciously)
on modal logic, they even moved beyond the barriers of modal orthodoxy in much
the same way — the way encapsulated in hybrid logic.

But there is a third sense in which hybrid languages are hybrid, and this is perhaps
the most important of all: hybrid languages are intrinsically hybrid. They allow us
combine different sorts of information in a single formalism. In a nutshell, hybrid
logics are sorted modal logics.

The importance of sorting has long been recognized in AL linguistics, and philoso-
phy: knowing that a piece of information is of a particular kind may allow us to draw
useful conclusions swiftly and easily. But sorting has been neglected in the logical
tradition: many useful kinds of sortal reasoning (for example, chaining through an
inheritance hierarchy) are regarded as too simple to be of logical interest, and every
logician knows that sorted first-order languages offer no new expressive power.

But sorted modal languages certainly do. As we have seen, by adding a second sort
of atomic formula (nominals) and a new construct to exploit it (satisfaction operators),
we can describe models in more detail and define new classes of frames. Moreover, we
can create a basic reasoning system that is modally natural and supports a wide range
of richer logics. But the hybrid languages of this paper have been simple two-sorted
systems. Why stop there?

Example 7.1 (Sorting and fine-grained temporal reference)
Blackburn [12] presents multisorted modal logics with atomic formulas ranging over
intervals of different lengths (seconds, hours, years, ... ). This lets us build repre-
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sentations like
(P)(3.05AP.M.AFriday A 26th AMarch A 1999 A Vincent-accidentally-squeeze-the-trigger),

which locates the trigger-squeezing event at the specific day and time the notation
suggests. These logics are then extended to deal with indexical expressions (such as
now, yesterday, today, and tomorrow), enabling us to build representations such as

(P)(Yesterday A Marvin’s-head-explode),

which locates the exploding-head event yesterday. Doing this properly means we have
to sort two-dimensional modal logic (among other things, we need to guarantee that
(F)(yesterday A ) is false at every state in every model, for yesterday always lies in
the past), and sorting turns out to be an effective way of exploiting two-dimensional
semantics. The resulting logics are decidable (in fact, NP-complete) in many cases of
interest.

Example 7.2 (Sorting and paths) When reasoning about branching time we often
want to assert that that some event will take place in all possible paths into the future.
This cannot be done in the temporal language in (F) and (P), even with the help of
nominals and Q.

Bull [21] solved this problem by further sorting. He introduced a three-sorted modal
language: in addition to propositional variables and nominals, his language contained
path nominals, atomic formulas true at precisely the points on some path through a
frame. He allowed explicit quantification over path nominals, and hence could define
a “true at some state in every future” modality:

(EVERY-FUT)p := Vp(p = (F)3z(z A p A p)).

Here p is a bound path nominal, and x a bound nominal, so this says that on every
path p through the current state, there is some future state x at which ¢ is true. See
Goranko [32] and Blackburn and Tzakova [20] for more on hybrid languages for paths.

I believe such examples point the way to an interesting line of work: dealing with
all ontological distinctions in multisorted modal languages. At present little is known
about what can and cannot be done in such systems, but interesting questions abound.
I hope some equally interesting answers will soon be forthcoming.

A Brief Guide to the Literature

I have said little about the history of hybrid logic; these notes are an attempt to
put this right, and provide a route into the hybrid literature. T’ll omit references to
applications of hybrid logic (such as feature logic) as these were given in the main
text.

Hybrid logic was invented by Arthur Prior, the inventor of (F) and (P) based tem-
poral logic (that is, tense logic). The germs of the idea seem to have emerged in
discussion with C.A. Meredith in the 1950s, but the first detailed account is in Chap-
ter V and Appendix B3 of Prior’s 1967 book Past, Present, and Future [42]. Several
of the papers collected in Paper on Time and Tense [43] allude to or discuss hy-
brid languages, and the posthumously published book Worlds, Times and Selves [44]
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is solely devoted to the topic (unfortunately, the book is only an approximation to
Prior’s intentions: it’s essentially a reconstruction, by Kit Fine, of notes found after
Prior’s death in 1969). Prior called nominals world propositions, typically worked
with very rich hybrid languages (he bound nominals using V and 3) and made heavy
use of near-atomic satisfaction statements like the ones used in our tableau systems.

The next big step was Robert Bull’s 1970 paper “An Approach to Tense Logic” [21].
Bull introduced a three-sorted hybrid language (propositional variables, nominals,
and path nominals), noted that the presence of V and 3 made it easy to combine the
modal canonical model construction with the first-order Henkin construction (and
thus proved the earliest version of Theorem 5.4), and re-thought modal and hybrid
completeness theory in terms of Robinson’s non-standard set theory. It’s a (too long
overlooked) classic. Tough going in places, it repays careful reading.

I know of no more papers on the subject till the 1980s, when hybrid logic was
independently reinvented by a group of Bulgarian logicians (Solomon Passy, Tinko
Tinchev, George Gargov, and Valentin Goranko). The locus classicus of this work
is Passy and Tinchev’s “An Essay on Combinatoric Dynamic Logic” [41], a detailed
study of hybrid Propositional Dynamic Logic. Like Bull’s paper, it’s one of the must
reads of the hybrid literature (but don’t overlook the many other excellent papers
by these authors, such as [40, 40, 30, 28, 29].) The Sofia School did discuss nominal
binding with V and 3, but one of their enduring legacies is that they initiated the
study of binder-free systems. Gargov and Goranko’s “Modal Logic with Names” [27]
studies such systems in the setting of unimodal logic, and my own “Nominal Tense
Logic” [11] does so in tense logic.

During the 1990s, the emphasis has been on understanding the hybrid hierarchy in
more detail. Goranko [31] introduced |, Blackburn and Seligman [15, 16] examined
the interrelationships between a number of different binders, and Blackburn and Tza-
kova [18, 20] mapped hybrid completeness theory for many of these systems. Intuitions
about locality hinted at in some of these papers are placed on a firm mathematical
footing in Areces, Blackburn and Marx [4]; the paper also proves some fundamental
interpolation and complexity results (see also [5], by the same authors, for a detailed
discussion of undecidability in | based logics). The late 1990’s also saw a number
of papers of hybrid proof theory: Blackburn [13], Demri [23], Demri and Goré [24],
Konikowska [36], Seligman [52] and Tzakova [55]. Actually, pioneering work had been
done by Seligman at the beginning of the decade (see [50, 51]); unfortunately his work
was overlooked.

Here’s three suggestions for further reading. First, Chapter 7 of Blackburn, de Ri-
jke, and Venema [14] contains a textbook level discussion on how to blend the canon-
ical model and Henkin constructions (the idea behind Theorem 5.4 and its analogs).
Second, “Complexity Results for Hybrid Temporal Logics” [3] a recent paper by Are-
ces, Blackburn and Marx studies complexity issues in some detail. The proofs make
heavy use of relational structures and have a strong geometric content. The paper
relates the results to issues in temporal (and, in spite of the title, description) logic;
for many readers this would be a good place to learn more about the expressivity hy-
brid languages offer. Third, Marx [38] is a review of HyLo’99 (the First International
Workshop on Hybrid Logic). This will give you a birds-eye-view of current issues in
the field. In addition, Carlos Areces has recently created a hybrid logic website at
http://www.illc.uva.nl/"carlos/hybrid. You can find the papers just mentioned
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(and others) there.
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