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1 PROLOGUE

Epistemic logic investigates what agents know or believe about certain factual
descriptions of the world, and about each other. It builds on a model of what in-
formation is (statically) available in a given system, and isolates general principles
concerning knowledge and belief. The information in a system may well change as
a result of various changes: events from the outside, observations by the agents,
communication between the agents, etc. This requires information updates. These
have been investigated in computer science via interpreted systems ; in philosophy
and in artificial intelligence their study leads to the area of belief revision. A more
recent development is called dynamic epistemic logic. Dynamic epistemic logic is
an extension of epistemic logic with dynamic modal operators for belief change
(i.e., information update). It is the focus of our contribution, but its relation to
other ways to model dynamics will also be discussed in some detail.

Situating the chapter This chapter works under the assumption that knowl-
edge is a variety of true justifiable belief. The suggestion that knowledge is nothing
but true justified belief is very old in philosophy, going back to Plato if not further.
The picture is that we are faced with alternative “worlds”, including perhaps our
own world but in addition other worlds. To know something is to observe that it
is true of the worlds considered possible. Reasoners adjust their stock of possible
worlds to respond to changes internal or external to them, to their reasoning or
to facts coming from outside them.

The identity of knowledge with true justified (or justifiable) belief has been
known to be problematic in light of the Gettier examples (see also our discussion
in Section 3.3). Being very short again, the point is that this simple picture ignores
the reasons that one would change the collection of possibilities considered, and
in particular it has nothing to say about an agent who made a good change for
bad reasons and thereby ends up “knowing” something in a counter-intuitive way.

However, the work presented in this chapter is in no way dependent on this
mistaken identity: while all the forms of knowledge presented here are forms of
true justified belief, the converse does not necessarily hold. On the contrary, in
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all the logics in this chapter that are expressive enough to include both knowledge
and belief operators, the above-mentioned identity is provably wrong.

We have already mentioned that we are interested in the broader concept of
justifiable belief. This is broader in the sense that we consider an even more ideal
agent, someone who reasons perfectly and effortlessly. (Technically, this means
that we are going to ignore the fact that the agents we want to model are not
logically omniscient. So justifiable belief can be regarded as a modeling of logically
omniscient agents immune from Gettier-type problems.)

In addition, justifiable belief for us diverges from knowledge in the sense that
it need not imply truth. As with Gettier examples, if one accepts and uses misin-
formation, then whatever conclusions are drawn are in some sense “justified.” We
postpone a fuller discussion of this point until later, but we wanted to alert the
reader who expects us to write justifiable true belief for what we study.

Since the topic of the chapter is “epistemic logic”, and since we were quick to
point out that it is mistaken to identify knowledge with (true) justifiable belief,
the reader may well wonder: why are they writing about it?

We claim that the study of justifiable belief is in itself illuminating with respect
to the nature of knowledge, even if it fails as a satisfactory proposal for knowl-
edge. This is the main reason why people have worked in the area. The main
contributions are technical tools that allow one to make reliable predictions about
complicated epistemic scenarios, stories about groups of agents which deal with
who knows what about whom, etc. We shall go into more detail on what this
means in Section 2 just below, and then in Section 5 we shall see how it works in
detail.

Getting back to our study overall, one could think of it as a first approximation
to the more difficult studies that would be desirable in a formal epistemology. It
is like the study of motion on a frictionless plane: it is much easier to study the
frictionless case than that of real motion on a real surface, but at the same time
the easier work is extremely useful in many situations. We also point out that our
subject has two other things going for it. First, it is a completely formalized subject
with precise definitions, examples, and results. We know that not all readers will
take this to be a virtue, and we have tried hard to introduce the subject in a
way that will be friendly to those for whom logic is a foreign language. But we
take the formalized nature of the subject to be an attraction, and so we aim to
convey its nice results. Second, in recent years the subject has concentrated on two
phenomena that are clearly of interest to the project of epistemology and which
for the most part are peripheral in older treatments of epistemic logic. These are
the social and dynamic sides of knowledge. The modeling that we present puts
these aspects in the center.

At the time of this writing, it seems fair to say that the subject matter of the
first part of our chapter, modeling based on justifiable belief, is fairly advanced.
There are some open issues to be sure, and also outstanding technical questions.
Many of the people involved in the area have gone on to adjacent areas where the
insights and technical machinery may be put to use. Two of these are combinations
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of logic and game theory and belief revision theory. We are not going to discuss
logic and game theory in this chapter, but the last section of our chapter does
present proposals on the extension of dynamic epistemic logic to the area of belief
revision.

In addition, as the subject moves closer to belief revision, it is able to question
the notion of justifiable belief, to develop a more general notion of conditional
belief, and also to meaningfully distinguish between various types of “knowledge”
and characterize them in terms of conditional belief. These and similar formal
notions should appeal to the epistemologist as well.

Overview Our overarching goal is that this chapter make the case for its subject
to the uninitiated. We begin work in Section 2 with discussion of a series of
epistemic scenarios. These discussions illustrate the subject of the chapter by
example, rather than by a direct discussion. They also are a form of “on-the-
job-training” in the kinds of logical languages and representations that will be
found later. This leads to a collection of issue areas for the subject that we
present briefly in Section 3. Following that, we have some background in logic
in Section 4. Even there, we are not only offering a catalog of a million logical
systems: we attempt to say why the philosophically-minded reader might come to
care about technical results on those systems. Dynamic epistemic logic (DEL, for
short) is our next topic. This is the part of the chapter with the most sustained
technical discussion. After this, we end the chapter with our look at belief revision
theory. The proposals there are foreshadowed in Section 2, and a reader mainly
interested in belief revision probably could read only Sections 2 and 7. It goes
without saying that such readers should also read Hans Rott’s Chapter 4c on the
subject in this handbook. This is also true for readers whose main interest is in
epistemology.

All readers would do well to consult Johan van Benthem and Maricarmen Mar-
tinez’ Chapter 3b in order to situate our work even more broadly in studies of
information modeling, especially the contrast and blending of the correlational
and proof theoretic stances on the topic. In their terminology, however, the work
in this chapter is squarely in the “information as range” paradigm.

The material in this chapter alternates between its main thrust, an examination
of the philosophical and conceptual sides of the subject, and the technical aspects.
We have chosen to emphasize the philosophical material because it is the subject
of this handbook; also, there already are several introductions to the technical
material. Historical pointers are mainly to be found at the ends of the sections.

2 INTRODUCTION: LOGICAL LANGUAGES AND REPRESENTATIONS

As with many works in the area, we begin with an epistemic scenario. The one
here is probably the simplest possible such scenario, an agent ignorant of which of
two exclusive alternatives holds.
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A person named Amina enters a room and is then shown a closed box on a
table. She has been told that box contains a coin, and that the coin lies flat in
the box. What she does not know is whether the coin lies heads up or tails up.

Our tasks as modelers are (1) to provide an adequate representation of this
scenario; (2) to use the representation as part of a formal account of “knowledge”
and related terms; (3) to see where the representation and formal account run into
problems; (4) to then “scale up” all of the previous points by considering more
complicated scenarios, models, and accounts, with the same goals in (1)–(3).

The most natural representation is simply as a set of two alternatives. In
pictures, we have

�������	H �������	T

The two circles are intended as abstract representations of the two states of the
coin. There is no significance to the symbols H (for heads) and T (for tails, but
please do not confuse it with truth). There is also no significance to the fact that
the representation has heads on the left and tails on the right. There is a very
real significance to the fact that each circle has exactly one symbol. There is some
significance to the absolutely symmetric treatment of the two alternatives. Perhaps
the most important aspect of the representation is that it leaves out everything
to do with Amina’s state of mind: why she thinks that heads and tails are the
only ones possible, her prior experience with similar situations, her emotions, etc.
For the most part, the formal work of this chapter will not help with proposals
on any of these important matters precisely because the representations abstract
from them.

We regard the symbols H and T as atomic propositions (We also call them
atomic sentences, using the two terms interchangeably.) It is problematic at this
point to speak of these as true or false in our scenario: since the story was silent
on the matter of whether the coin was, in fact, lying heads up or tails up, it is
debatable whether there is a “fact of the matter” here or not. No matter how
one feels on where there is, in fact, a fact or not, it is less controversial to hold
that either the coin lies heads up or tails up, and not both. (Recall that this is
part of what Amina has been told at the outset.) It is natural to use standard
propositional logic, and to therefore write H ↔ ¬T. (We may read this as “heads
holds just in case tails fails”.) We would like this sentence H ↔ ¬T to come out
true on our representation, and so clearly we need a semantics for sentences of this
type.

Even before that, we need a formal language. We take propositional logic built
over the atomic propositions H and T. So we have examples such as the one we
just saw, H and T, and also ¬¬H, H → (H → T), H ∨ T, etc. The language is
built by recursion in the way all formal languages are. We’ll use letters like ϕ for
propositions of this and other languages.

In order to give the semantics, it will be very useful to change the representation
a little. We had used H and T inside the circles, but this will get in the way; also,
as we shall see many times in this chapter, the states in our representations are
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not individuated by the atomic facts that they come with. So let us change our
representation to


������s 
������t
with the additional information that H holds at s and not at t, and T holds at t and
not at s. We take this extra piece of information to be part of our representation.
So we have a set {s, t} of two (abstract) states and some extra information about
them. The set {s, t} has four subsets: ∅, {s}, {t}, and {s, t} itself. We also have
the usual set theoretic operations of the union of two subsets (x ∪ y), intersection
(x∩y), and relative complement (x). To spell out the details of relative complement
in this example: ∅ = {x, y}, {s} = {t}, {t} = {s}, and {s, t} = ∅.

Now it makes sense to formally interpret our language, assigning a set of states
[[ϕ]] to a sentence ϕ as follows:

[[H]] = {s}
[[T]] = {t}
[[¬ϕ]] = [[ϕ]]

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]
[[ϕ→ ψ]] = [[ϕ]] ∪ [[ψ]]
[[ϕ↔ ψ]] = ([[ϕ]] ∩ [[ψ]]) ∪ ([[ϕ]] ∩ [[ψ]])

The reader will know that we could have given only a few of these, leaving the rest
to re-appear as derived properties rather than the official definition. The choice is
immaterial. What counts is that we have a precise definition, and we can verify
important properties such as [[H ↔ ¬T]] = {s, t}. The reason is that

([[H]] ∩ [[¬T]]) ∪ ([[H]] ∩ [[¬T]]) = ({s} ∩ {t}) ∪ ({s} ∩ {t}) = {s, t}.

We’ll use S to refer to our set of states, both in this discussion and in later ones.
And we shall say that ϕ is valid in a model if its semantic interpretation [[ϕ]] is
the full set S of states, not merely a proper subset.

We have reliable and consistent intuitions concerning knowledge. Surely one
feels that upon walking into the room, Amina does not know whether the coin
lies heads or tails up: she was informed that there is a coin in the box, but so
without further information to the contrary, she should not know which alternative
holds. We expand our language by adding a knowledge operator K as a sentence-
forming operation, making sentences from sentences the way ¬ does. We thus have
sentences like KH, K¬KT, etc. The semantics is then given by

[[Kϕ]] =
{
S if [[ϕ]] = S
∅ if [[ϕ]] 	= S

Notice that this modeling makes knowledge an “all-or-nothing” affair. One can
check that [[KH]] = ∅, matching the intuitions that Amina does not know that the
coin lies heads up. But also [[K¬H]] = ∅. In contrast, K(H ∨ ¬H) is valid on this
semantics: its interpretation is the entire state set.
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“Knowing that” and “knowing whether” Up until now, all of our modeling
of knowledge is at the level of knowing that a given proposition, say ϕ, is true or
false. We have no way of saying knowing whether ϕ holds or not. The easiest
way to do this in our setting is to identify knowing whether ϕ with the disjunction
knowing that ϕ or knowing that ¬ϕ. It will turn out that in this example and all
of our other ones, this “or” is automatically an exclusive disjunction. That is, our
modeling will arrange that no agents know both a sentence and its negation.

Iterated knowledge One should note that our formal semantics gives a deter-
minate truth value to sentences with iterated knowledge assertions. For example,
K¬KH comes out true. (The reason: we saw above that [[KH]] = ∅. Therefore
[[¬KH]] = {s, t}, and so also [[K¬KH]] = {s, t}.) Translating this back to our
original scenario, this means that we are predicting that Amina knows that she
doesn’t know that the coin lies heads up. For a real person, this introspectivity
is clearly false in general: though sometimes people can and do introspect about
their knowledge, it seems that only a tiny amount of what we talk about people
knowing is even susceptible to introspection. However, given our take on knowl-
edge as justifiable belief (and with justifications modeled as surveys of all relevant
possibilities), it fits. The upshot is that in the case of iterated knowledge asser-
tions, the kind of modeling that we are doing gives predictions which are at odds
with what real people do (though they are the acid test) but seem to work for
ideal agents.

Note, however, that justifiable knowledge is a kind of potential knowledge: we
would not feel that a reasoner who exhibited it was making a mistake. We would
be more likely to commend them. Thus, the modeling that uses it is of value in
adversarial situations of the kind found in game theory. When you reason about
your opponent in a game (or war), you should not assume him to be stupid, but
on the contrary: the safe option is to assume that he already knows everything
that he could possibly know; i.e, to model him as a logically omniscient, fully
introspective ideal agent. This is because you want to make sure your strategy
works no matter how smart or how resourceful your opponent happens to be. (On
the contrary, when reasoning about your own, or your allies’, knowledge, it is safer
not to idealize it, but to take into account possible failures of introspection.)

2.1 Learning

Suppose next that Amina opens the box and sees that the coin lies heads up. It
is natural to assume that after she looks, she knows that the coin lies heads up.
Furthermore, and in support of this, consider the model


������s
along with the information that s is a state where H is true. This model reflects the
intuition that she considers only one state to be possible. Recall from Section 1 that
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our work here is mainly about knowledge as justifiable belief. It takes knowledge
to result from a survey of the possible. The model above reflects this choice: it
is a survey of the justifiable possible. (But a one-point model is so simple that it
reflects other intuitions as well.)

What interests us most is that we have a change of model. In this case, the
change was to throw away one state. Taking seriously the idea of change leads to
dynamics, a key point of our study. Sometimes people with a little exposure to
logic, or even a great deal of it, feel that logic is the study of eternal certainties.
This is not the case at all. In the kinds of settings we are interested in here, we
move from single models to sequences of them, or structures of some other kind.
The particular kind of structure used would reflect intuitions about time, causality
and the like. These matters are largely orthogonal to the epistemic modeling. But
the important point for us now is that we can “add a dimension” to our models
to reflect epistemic actions.

We would like to indicate the whole story as


������s ��
������t 
������s
We think of this as the two representations from before (along with the information
that the picture suppresses, that s is a state where the coin lies heads up, and t
the same for tails) connected by the dotted arrow. Amina discards the state t
because it does not reflect what she learned. But s persists, and the dotted arrow
indicates this. As it happens, it will again be confusing to use the same letter s for
both the “before” and “after” states. This is not strictly needed here, but later in
the paper it will be needed. So we would prefer to illustrate the story as


������s ��
������t 
������u
Again, we would supplement the picture with a description of which states have
which coin faces showing: H is true at s and u, while T is true at t. Note that
we can no longer use the “all-or-nothing” notion of knowledge from the previous
section: in the original state s, Amina knows the state cannot be u (since she
knows that she doesn’t yet know the face of the coin); while in the new state u,
Amina knows the state is neither s or t anymore. In other words, Amina cannot
distinguish between the initial states s and t, but can distinguish between them
and the new state u. We illustrate this by using lines to represent the agent’s
indifference between two (indistinguishable) possibilities:


������s ��
������t 
������u
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The way to read an assertion like “there is a line between s and t” is as follows:
Amina is indifferent in u between the world being as described in s and being
described as in t. The agent is unable to tell apart these two descriptions: for all
she knows, either of them can be a correct description of the real world. So in s,
Amina thinks that the world might be t, or again it might be s itself. (This is not
shown in the picture, but it is tacitly assumed.) In u, Amina thinks that u itself
is the only possible state, and so she knows there that the coin lies heads up.

But what are these “states”? The above model has also more states. Since
we have been using the word “state” quite a bit, a word is in order on this usage.
Our states are the same as possible worlds in explanations of modality. That
is, one should regard them as theoretical primitives that have an overall use in
the modeling. They are abstract objects that we as outsiders use to discuss the
examples and to further build a theory. Using them does not involve a commitment
to their ontological or psychological reality. There is also a tradition of possible
worlds as (maximal consistent) sets of propositions, and we also think of Carnap’s
state descriptions. But we do not follow either of these in our modeling, preferring
to keep states as the primitive. It would be possible to change what we do to render
states as maximal consistent sets, however, if one took the underlying language to
be the full modal language which we are describing, not simply propositional logic.
For our states are not individuated by the propositional facts holding in them: as
we shall see shortly in (6) below, to separate states one needs the information
contained in the arrows.

Knowledge The heart of the matter is the proposal for the semantics of knowl-
edge. Building on our explanation of what the worlds and the lines represent, the
idea is that Amina “knows” (in our sense) ϕ in a world x just in case the following
holds: ϕ is true in all worlds that she cannot tell apart from x. In symbols, the
semantics is given by:

[[Kϕ]] = {s : whenever Amina is indifferent between s and t, t ∈ [[ϕ]]}
(1)

In other words: we relativize the previous “all-or-nothing” definition to the set of
worlds that are indistinguishable from the real one. Using this modified definition,
we can see that, in the initial state s of the above model, Amina doesn’t know the
face of the coin is H, while in the new state u she knows the face is H.

Comparison with probabilistic conditioning It will be useful at this point
to note a similarity between the kind of updating that models Amina’s learning
in this very simple setting and what happens all the time in probability. Suppose
that we have a probability space. This is a set S of simple events, together with
a probability p : S → [0, 1] with the property that

∑
s∈S ps = 1. The probability

space as a whole is S = (S, p); that is, the set S together with the function p.
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The subsets of S are called events. Every event X gets a probability p(X),
defined by p(X) =

∑
s∈X px. We should think of S as the states of some back-

ground system S. An event X is then like a property of the system, and pX as the
probability that a randomly observation of S will have the property X . Not only
this, but every event X whose probability is nonzero gives a probability space on
its own. This time, the sample space is X , and the probability p|X is given by
(p|X)(s) = p(s)/p(X). This formula reflects the re-normalization of the probabil-
ity p. We’ll call this new space S|X = (X, p|X). It is a subspace of the original
S called S conditioned on X . The idea is that if we again start with a system
S whose set of states is modeled by the probability space S, and if we obtain
additional information to the effect that the background system definitely has the
property X , then we should revise our modeling, and instead take use S|X :

(S, p)
learning that X �� (S|X, p|X) .

The sentences in our formal language are notations for extensional properties (sub-
sets) of the overall state space. Adding new information, say by a direct observa-
tion, corresponds to moving to a subspace, to changing the representation.

2.2 Another agent enters

Let us go back to our first scenario, where Amina walks into the room in ignorance
of whether the coin lies heads or tails up. (We therefore set aside Section 2.1 right
above.) Being alone in a room with a closed box is not much fun. Sometime later,
her friend Bao walks over. The door is open, and someone tells Bao the state of
the coin and does it in a way that makes it clear to Amina that Bao now knows
it. At the same time, Bao is in the dark about Amina’s knowledge.

The natural representation here uses four states.

�

�

�

�u:H
b �

�

�

�v:H
a �

�

�

�w:T
b �

�

�

�x:T (2)

Note that now we have labeled the indifference lines with the names of the agents.
In this case, we have four worlds called u, v, w, and x. The atomic information is
also shown, and we have made the picture more compact by eliminating redundant
information. (So we intend u to be a world where H is true and T is false, even
though the second statement is not explicit.)

As before, the way to read an assertion like “there is a line labeled b between u
to v” is as follows: Bao is indifferent in u between the world being as described in
u and being described as in v. So in v, Amina thinks that the world might be w,
or again it might be v itself. In u, Amina thinks that u itself is the only possible
state, and so she knows there that the coin lies heads up.

The world u is the real world, and so once we have a formal semantics, we check
our intuitions against the formal semantics at u.
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We begin, as we did in Section 2, with the propositional language built from
symbols H and T. In our current model, we have semantics for them:

[[H]] = {u, v} [[T]] = {w, x}.
We clearly need now two knowledge operators, one for a (Amina) and one for b.
We shall use Ka and Kb for those, and we define by taking for each agent the
appropriate indifference lines in the definition (1):

[[Kaϕ]] = {s : whenever Amina is indifferent between s and t, t ∈ [[ϕ]]}
[[Kbϕ]] = {s : whenever Bao is indifferent between s and t, t ∈ [[ϕ]]}

(3)
We can check whether our formal semantics matches our intuitions about our
model. The way we do this is by translating a sentence A of English into a
sentence ϕ in our formal language, and evaluating the semantics. We want to be
sure that x ∈ [[ϕ]], where x is the “real” or “actual” world in the model at hand.

Here are some examples:

English Formal rendering Semantics
the coin shows heads H {u, v}
a knows the coin shows heads KaH ∅
a knows whether the coin shows heads KaH ∨Ka¬H ∅
b knows that the coin shows heads KbH {u, v}
b knows whether the coin shows heads KbH ∨Kb¬H {u, v, w, x}
a knows that b knows Ka(KbH ∨Kb¬H) {u, v, w, x}
whether the coin shows heads

In our model, u is the “real world”. In all of the examples above, the intuitions
match the formal work.

But does there have to be a real world? Our representation in (2) and our
semantics in (3) did not use a designated real world. So mention of a real world
could be dropped. However, doing so would mean that we have less of a way
to check our intuitions against the formalism (since our intuitions would be less
sharp). But one who doesn’t like the idea of a “real world” would then look at
all the worlds in a representation, take intuitive stories for them, and then check
intuitions in all cases.

Announcements We have already begun to discuss dynamics in connection
with these simple scenarios. Here are ways to continue this one. Suppose that
Amina and Bao go up and open the box. We again would like to say that the
resulting model has a single world, and in that world both agents consider that
world to be the only possible one. In a word (picture), we expect

�

�

�

�u:H (4)
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However, this is not quite what we get by the world-elimination definition which
we have already seen. What we rather get is

�

�

�

�u:H
b �

�

�

�v:H (5)

(We have dropped the worlds w and x from the picture in (2), and all the lines
pertaining to them.)

So we have a question at this point: can we say that the two models are equiv-
alent, and can we do so in a principled way? We return to this point at the end
of Section 4.4.

As an alternative, suppose someone outside simply shouts out “The coin lies
Heads up.” Again, on the modeling so far, we have the same state at the end. We
thus conclude our representations cannot distinguish sources of information.

2.3 Another agent enters, take II

At this point, we want an alternative to the story in Section 2.2. Amina is again
in the room in ignorance of the state of the coin. Bao walks over, but this time,
the door is shut. Outside the door, some trusted third party says to him, “I’ll tell
you that the coin lies heads up.” Then Bao walks in.

We naturally have some intuitions about what is going on. Bao should know
that the coin lies heads up, and he should also know that Amina doesn’t know
whether the coin lies heads up or tails up. What about Amina? What should she
think about Bao’s knowledge? We don’t know enough about her to say for sure,
but to be definite, let us assume that she (falsely) believes that Bao is as ignorant
as she. Moreover, let us assume that Bao believes this about Amina.

Belief Since we have mentioned belief, a comment is in order. We continue to
deal with “knowledge” as justifiable belief. This is the only notion at play at the
moment. We have used belief in the previous paragraph only to emphasize that
the proposition believed is actually false.

At this point, we return to our scenario and to a model of these intuitions. The
model we have in mind is

�

�

�

�u:H b��
a

����
��

��
�� a

����
��

��
��

�

�

�

�v:Ha,b
��

��
a,b

��
�

�

�

�w:T a,b		

(6)

We shall shortly go into details about why this model works. Before that, a com-
ment: If one tries to come up with a model by hand which reflects correctly the
intuitions that we spelled out above, he or she will see that it is not a straightfor-
ward task. It is hard to argue that something is not easy to do, so we encourage
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readers to try it. This will also provide experience in the important task of exam-
ining putative models with the eye towards seeing whether they match intuitions
or not.

This model generalizes the two-directional lines that we saw above to one-
directional arrows. The way to read an assertion like “there is an arrow labeled a
from u to v” is as follows: if the situation were modeled by u, then Amina would
be justified in considering v a possibility.

In our example, u is the “real world”. In that world, Bao is countenances no
others. Amina, on the other hand, thinks that the world is either v or w. (But she
does not think that the world u itself is even possible. This reflects the intuition
that Amina doesn’t think it possible that Bao knows the state of the coin.) The
worlds she thinks are possible are ones pretty much like the two we saw earlier for
her alone, except that we have chosen to put in arrows for the two agents.

Note that u and v in (6) have the same atomic information. However, they are
very different because what counts is not just the information “inside” but also
the arrows. Now given our explanation of what the epistemic arrows are intended
to mean, we can see that there is some circularity here. This is not a pernicious
circularity, and the use of the logical language makes this evident. Once we take
the representation as merely a site for the evaluation of the logical language, the
problematic features of the models lose their force. We turn to that evaluation
now.

Building on our explanation of what the worlds now represent, we say that a
believes ϕ in a world x just in case the following holds: ϕ is true in all worlds that
she would think are possible, if x were the actual world. Formally:

[[Baϕ]] = {s : whenever s→a t, t ∈ [[ϕ]]}
[[Bbϕ]] = {s : whenever s→b t, t ∈ [[ϕ]]} (7)

We again check that our semantics and model are sensible, going via examples.

English Formal rendering Semantics
the coin shows heads H {u, v}
a knows (believes) the coin shows heads BaH ∅
a believes the coin shows tails BaT ∅
b believes the coin shows heads BbH {u}
b believes that a doesn’t know (believe) it’s heads Bb¬BaH {u, v, w}
b believes that a believes that BbBa¬BbH {u, v, w}
b doesn’t know (believe) it’s heads

In our model, u is the “real world”. In all of the examples above, the intuitions
match the formal work.

Knowledge and Belief What does Amina actually know in the scenario above?
She believes that Bao doesn’t know the face of the coin, but this belief is not
true. Is Amina aware of the possibility that her belief is false? Let us assume
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so: in other words, although she believes that Bao does not know the face, she
at least countenances the possibility that he does. Note that the states u, v and
w are indistinguishable for her: she “sees” the same things, and has the same
information and the same beliefs in all these states. But then these states also are
indistinguishable for her from a fourth possibility, namely the one in which Bob
knows the face but the coin shows tails. All the information that Amina has is
consistent with this fourth possibility, so she cannot exclude it either.

To distinguish between belief and (truthful) knowledge, we supplement what
we so far have, in a few ways. First, we need to add to the state space a fourth
state, representing the fourth possibility just mentioned. Second, we consider two
models on the same state set. The one on the left below is intended to model
knowledge, while the one on the right is intended for belief:
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(8)

The real world is u. On the side of knowledge, Amina is indifferent between all the
states. The difference between the belief model and the one in (6) is that we have
added a fourth state, x. This state is inaccessible from u in the belief model, and so
it will turn out to be irrelevant from the point of view of the agent’s beliefs in the
actual world; however, x will be crucial in dealing with knowledge and conditional
belief in the real world. (Concerning knowledge, leaving x off would mean that
Amina in the real world knows there is no world in which Bao knows that the
coin is tails up. This would give her knowledge beyond what is justified by our
story.) Recall that the lines (as on the left) are the same as two-way arrows. So
we can see that all of the arrows in the right diagram (for belief) are also present
in the left diagram (for knowledge). This is good: it means that everything the
agents know in a model will also be believed by them. To make this precise, we of
course need a formal semantics. Let us agree to write ∼a for the knowledge arrows
(indifference lines), and →a for the belief ones. In fact, it is natural to consider
loops as being implicitly present in the knowledge model, so we put s∼a t iff either
s = t or there is an indifference line between them. The relevant definitions (stated
only for Amina) will then be

[[Kaϕ]] = {s : whenever s∼a t, t ∈ [[ϕ]]}
[[Baϕ]] = {s : whenever s→a t, t ∈ [[ϕ]]} (9)

On this semantics, then, Amina will believe that Bao does not know the state of
the coin, but also, she does not know this.

Observe now that the two models for this situation are not independent: the
belief model contains all the information about the knowledge model. Indeed, we
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can recover the knowledge model from the belief model by closing the belief arrows
under reflexivity, symmetry and transitivity. Visually, this amounts to replacing
in the model on the right all the one-way arrows by lines, adding loops everywhere
and adding lines between any two states that are connected by a chain of lines. A
simpler alternative procedure is to connect any two states by lines if and only if
the same states are reachable from both via (one-step) belief arrows. This gives
us the knowledge model on the left.

We know that there are issues involved in the translation that we are ignoring.
One point worth mentioning is that translating beliefs regarding conditionals is
problematic (and this is why none of the sentences in the table are conditionals).
The reason is that the formal language suggests the material conditional, and
so the mismatches between any natural language conditional and the material
conditional are highlighted by the process we are suggesting.

2.4 Conditional beliefs

Consider again the belief-knowledge model (8). Where this model goes wrong is
in dealing with conditional assertions that are counterfactual with respect to the
agents’ beliefs. Consider the following statements:

1. If Bao knows the state of the coin, then the coin lies either heads up or tails
up.

2. If Bao knows the state of the coin, then the coin lies heads up.

3. If Bao knows the state of the coin, then Amina does, too.

We are interested in whether Amina believes any of these statements. As such,
these are conditional belief assertions. Intuitively, she should believe the first
statement, but not the second and third. Yet, they are all true on the definition
of belief in (9), if we interpret conditional beliefs as beliefs in the conditional and
we interpret the conditionals as material conditionals.

In fact, the problem is not simply the use of the material conditional: no other
“belief-free” notion of conditional would do either! As argued in e.g. Leitgeb
[2007], it is not possible to separate a conditional belief into a doxastic part (the
“belief”) and a belief-free part (the “conditional” that forms the content of the
“belief”). Gärdenfors’ Impossibility Theorem1 can be understood as showing that,
under reasonable assumptions, conditional beliefs are not equivalent to beliefs in
conditionals, for any belief-free notion of conditional. As a consequence, we have
to treat conditional belief as one indivisible operator Bα

aϕ instead of a composed
expressionBa(α⇒ ϕ).2 But the above models are not adequate to give a semantics
to this operator. On a technical level, the problem is that to make the sentence
Amina believes that Bao doesn’t know come out true we need a belief model (such

1See Section 7 and Hans Rott’s Chapter 4c in this handbook for.
2In Chapter 3b, this expression would be written Ba(ϕ|α).
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as the one above (8)) in which u and x are not to be accessible for Amina from u;
but at the same time, for evaluating hypothetical statements like the conditionals
above, we need to use a different belief model, one in which u and x become
accessible from u.

There are several ways of getting an appropriate model, but all of them involve
going beyond simple belief models. We are going to present one common modeling,
essentially derived from work of Lewis, Grove, and others. We supplement our
model with a Grove system of spheres, exactly as discussed and pictured in Section
2.3 of Chapter 4c. We need one for each agent at each state. We’ll only spell out
what Amina’s system looks like at u. It would have v and w in the center, since
she is most committed to them. In the next ring, we put u and (crucially) x. As
with all such systems of spheres, the definition gives us notions of which worlds
are at least as plausible as others, and strictly more plausible as others. According
to the above system of spheres, states v and w are equally plausible for Amina,
and they are strictly more plausible than the other two states u, x, which are also
themselves equally plausible.

If we draw arrows from any given state to all the states that are at least as
plausible as it, we obtain the following diagrammatic representation:
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(10)

This is a plausibility model: it doesn’t directly capture knowledge or beliefs, but
only doxastic plausibility. However, this plausibility model contains all the infor-
mation about the belief and knowledge models. Indeed, we can recover the belief
model by looking at the most plausible states (for each agent); i.e., the states which
can be reached via some (one-step) plausibility arrow from any other state that
is reachable from them (via a one-step arrow). To obtain the belief model in (8),
we keep for each agent only the arrows pointing to that agent’s most plausible
states. We can then recover the knowledge model from the belief model as in the
previous section. Or we can directly obtain the knowledge model in (8) from the
above plausibility model, by simply replacing all the arrows by lines (and deleting
the loops).

We now rework the definition of conditional belief. Actually, we keep track of
the antecedent of the conditional in a special way, and write Bα

aχ to symbolize
Amina believes that were α to be true, χ would have been true as well. The formal
definition is:

[[Bα
a χ]] = {s : t ∈ [[χ]], for all t ∈ [[α]] such that s∼a t

and such that there is no u ∈ [[α]], such that s∼a u
and u is strictly more plausible than t for Amina}

(11)
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(And similarly for Bα
b χ, of course.)

The idea is that in evaluating a conditional whose antecedent α contradicts the
current beliefs, one has to discard the most plausible worlds, and instead to “fall
back” to the worlds that are most plausible given α.

Let us see how this works in our example. For Amina, x is at least as plausible
as the real world u. So she should use this world in evaluating conditionals, along
with others. This easily shows why sentences 2 and 3 in the beginning of this
subsection come out false.

Incidentally, one desirable property of this kind of modeling is that an agent’s
knowledge (as opposed to belief) should not be overridden, even in hypothetical
contexts. (This will not be suitable to modeling conditionals which are counterfac-
tual with respect to knowledge.) To arrange this, we should require that the union
of all spheres for a given agent in a given state coincides with the ∼-equivalence
class of the agent there.

Modern epistemic logic started to flourish after modal logic (with its roots
in Aristotle) was formalized and given a possible world semantics. It is hard to
track down the exact origins of this semantics, but it is widely known as Kripke
semantics, after Kripke, who devoted a number of early papers to the semantics
of modal logic [Kripke, 1959]. A contemporary and thorough reference for modal
logic is the monograph [Blackburn et al., 2001].

Observations on how epistemic states change as a result of new information
have been around since the Hintikka founded the field of epistemic logic in his
1962 book Knowledge and Belief [Hintikka, 1962] (republished in 2005 by College
Publications, London). Hintikka is broadly acknowledged as the father of modern
epistemic logic, and his book is cited as the principal historical reference. Hintikka
himself thinks that von Wright [1951] deserves these credits.

From the late 1970s, epistemic logic became subject of study or applied in the
areas of artificial intelligence (as in R.C. Moore’s early work [1977] on reasoning
about actions and knowledge), philosophy (as in Hintikka’s [1986]), and game
theory (e.g. Aumann [1976]). In the 1980s, computer scientists became interested
in epistemic logic. In fact, the field matured a lot by a large stream of publications
by Fagin, Halpern, Moses and Vardi. Their important textbook Reasoning about
Knowledge [Fagin et al., 1995] which appeared in 1995, contains the contents of
many papers co-authored by (subsets of) them over a period of more than ten
years. Another important textbook in both ‘pure’ and ‘applied’ epistemic logic is
Meyer and van der Hoek [1995]. These both should be consulted in connection
with Sections 1–4 of this chapter. The work from Section 5 onward (on dynamic
epistemic logic and its extensions) is mainly newer than those books. A brief,
but very good, introduction to the history, the philosophical importance and some
of the technical aspects of epistemic logic is the chapter “Epistemic Logic”, by
Gochet and Gribomont, in the Handbook of History of Logic [2006]. It also gives
a very brief look at some of the older work in dynamic epistemic logic.

At the same time as computer scientists became interested in the topic, linguistic
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semanticists were also discovering many of the basic issues, such as effects of
public announcements and the problem of belief revision. Of special mention
here is the long work of Robert Stalnaker, whose longstanding involvements with
knowledge and belief revision theory include publications such as [Stalnaker, 1968;
Stalnaker, 1996; Stalnaker, 2006].

3 FURTHER ISSUES AND AREAS IN EPISTEMIC LOGIC

At this point, we have said a little about the subject matter of the chapter. Before
we go further, we mention a few issues, problems, puzzles, and discussion topics
in the area. We especially comment on how they relate to the examples in the
previous sections.

3.1 The Muddy children

Perhaps the most common of epistemic puzzles is one known in various guises and
under names like the muddy children, the wise men or the unfaithful spouses [Gamow
and Stern, 1958; Moses et al., 1986]. Here is one version of it. A number of chil-
dren have been playing outside. After some time, some of them might have mud
on their foreheads; however, they don’t discuss this with one another. But along
comes one of their fathers, and says:

“At least one of you has mud on his/her forehead. Do you know if you are
muddy?”

Let n be the number of who have muddy foreheads. If n = 1, the one muddy
one sees the clean heads of the others and deduce that she herself is muddy.

Otherwise, all reply (in unison) “No, I don’t know.” At this point, the father
again asks the same question. If n = 2, the two muddy ones would know see each
other and know that n ≥ 1, simply because the other did not answer Yes the first
time. So they would know on the second questioning.

The story continues in this way. The mathematical upshot is that if there are
n muddy children to start, then after the father asks his question n times, the
muddy ones will know their status; and before the nth time, nobody will know it.
The essential feature for us of the story is that it illustrates that statements about
ignorance can lead to knowledge.

Comparing to the content of this chapter, it is not hard to draw the representa-
tions for this problem and for variations, and to watch the process of announcement
(as we have seen it in Section 2.2). Indeed, we have found these to be excellent
sources of exercises in modal logic. We shall see the formal logical systems related
scenarios like this.

Incidentally, we saw above that statements can change an agent’s knowledge.
It is even possible to find a setting where an agent can believe something at the
outset, then someone else’s statement causes them to lose this belief, and then a
third statement to regain it. We present an example in Section 6.1.
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3.2 Logical omniscience

Logical omniscience is the phenomenon whereby an agent’s beliefs or knowledge
are modeled in such a way that they are closed under logical deduction. So the
agent knows (or believes) all the consequences of their knowledge, and in particular
knows infinitely many sentences, theorems whose length or complexity are absurdly
great, etc. Logical omniscience is thus a complaint against all of the kinds of
models we are considering in this chapter. To avoid the complaint, one must
adopt much more fine-grained models. A number of different such models have
been proposed: a logic of awareness ([Levesque, 1984], further extended by Fagin
and Halpern), multi-valued epistemic logic (A. Wisniewski [1998]), doxastic linear
logic (D’Agostino, Gabbay and Russo [1997]), resource-bounded belief revision (R.
Wassermann [1999; 2000]) etc. A solution using a new type of dynamic-epistemic
logic was proposed by Ho Ngoc Duc [2001].

3.3 The Gettier challenge

Gettier [1963] pointed out examples that effectively jettisoned the justified true
belief analysis of knowledge. The ensuing discussions are central to modern epis-
temology. For an overview of the area, see, e.g., Steup [Spring 2006].

Perhaps the easiest related example in epistemic logic is the following. Consider
a muddy children scenario with two children, say A and B. A is muddy and B
clean. A parent announces that at least one is muddy, asks if the two know their
state. Usually, A would announce affirmatively and B negatively, but this time
let A lie and say that she does not; B of course truthfully replies that he doesn’t
know. Then on second round, both announce that they do know. The point is,
that B’s announcement is truthful: taking knowledge to be justifiable true belief,
he will have some knowledge of his state after hearing A once, no matter what she
says. B’s announcement is also justified, being based on A’s first declaration. At
that point, B has a justified true belief that he knows his state. But we would
not judge B to actually know whether he is dirty or not. This would mean either
knowing that he is dirty, or knowing that he is clean: he thinks he knows the
former and denies he knows the latter.

3.4 Other notions of knowledge

The Gettier examples have been used, among other things, to deny the validity
of the Negative Introspection axiom for knowledge: in the example in Section 3.3,
B thinks that he knows his state, but intuitively speaking we can’t agree that he
actually knows it. So agents may not know something, while believing that they
know it.

Various authors proposed dropping the characteristic S5 axiom (Negative Intro-
spection), and sticking with the system S4 instead. For instance, the S4 principles
were as far as Hintikka [1962] was willing to go. This may also be appropriate in an
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intuitionistic context, and also fit well with a topological interpretation of knowl-
edge. For other work on appropriate axioms, see Lenzen [1978; 2003].

The defeasibility analysis of knowledge We only look here at one of the
alternative proposals for a knowledge concept, that fits well with our discussion of
conditional beliefs in Section 2.4. This is the “defeasibility strategy”, followed by
many of those who attempted to respond to Gettier’s challenge, see e.g Lehrer and
Paxson [1968], Swain [1974], Stalnaker [1996; 2006]. To quote Stalnaker [2006],
“the idea was that the fourth condition (to be added to justified true belief) should
be a requirement that there would be no ‘defeater’ - no true proposition that, if
the knower learned that it was true, would lead her to give up the belief, or to be
no longer justified in holding it”. One way to do this is to add to the semantics
of belief a theory of belief revision, and then define knowledge as belief that is
stable under any potential revision by a true piece of information. But as we shall
see, conditional beliefs and plausibility models, introduced in Section 2.4, give us
a semantics for belief revision. So it is not surprising that defeasible knowledge
was formalized using a logic of conditional beliefs, as in [Board, 2004] and [Baltag
and Smets, 2006c], or a logic of conditionals [Stalnaker, 1996].

Knowledge and “safe belief” However, the notion of knowledge defined on
plausibility models in Section 2.4 is stronger than the one of (true, justifiable)
defeasible belief. As we shall see, it corresponds to a belief that is “absolutely
unrevisable”: it cannot even be defeated by revising with false information. Since
we followed the common usage in Computer Science and called “knowledge” this
strong, absolute notion, we shall follow Baltag and Smets [2006b; 2006c] and call
safe belief the weaker notion resulting from the defeasibility analysis. In [Stalnaker,
1996; Baltag and Smets, 2006b; Baltag and Smets, 2006c], this concept is applied
to reasoning about solution concepts in Game Theory.

3.5 Moore sentences

By a Moore sentence we mean one of the form ‘p is true and I don’t believe that’,
or ‘p is true and I don’t know that’. Moore’s “paradox” is that such a sentence
may well happen to be true, but it can never be truthfully asserted: a person
uttering this sentence cannot believe it. As this example crops up in very different
settings, and as it is so crucial for a proper understanding of dynamic epistemics,
we discuss its origin in some detail, as a proper historical primer to the subject
area. In this discussion, Bϕ means “I believe ϕ ” and Kϕ means “I know ϕ ”.

Moore writes that if I assert a proposition ϕ, I express or imply that I think
or know ϕ, in other words I express Bϕ or Kϕ. But ϕ cannot be said to mean
Bϕ [Moore, 1912, p.77] as this would cause, by substitution, an infinite sequence
BBϕ, BBBϕ, ad infinitum. “But thus to believe that somebody believes, that
somebody believes, that somebody believes . . . quite indefinitely, without ever
coming to anything which is what is believed, is to believe nothing at all” [Moore,
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1912, p.77]. Moore does not state in [Moore, 1912] (to our knowledge) that ϕ∧¬Bϕ
cannot be believed. In Moore’s “A reply to my critics”, a chapter in the ‘Library of
Living Philosophers’ volume dedicated to him, he writes “ ‘I went to the pictures
last Tuesday, but I don’t believe that I did’ is a perfectly absurd thing to say,
although what is asserted is something which is perfectly possibly logically” [Moore,
1942, p.543]. The absurdity follows from the implicature ‘asserting ϕ implies Bϕ’
pointed out in [Moore, 1912]. In other words, B(p ∧ ¬Bp) is ‘absurd’ for the
example of factual information p. As far as we know, this is the first full-blown
occurrence of a Moore-sentence. Then in [Moore, 1944, p.204] Moore writes “ ‘I
believe he has gone out, but he has not’ is absurd. This, though absurd, is not
self-contradictory; for it may quite well be true.”

Hintikka [1962] mentions the so-called ‘Moore’-problem about the inadequacy
of information updates with such sentences. This leads us to an interesting further
development of this notion, due to Gerbrandy [1999], van Benthem [2004] and oth-
ers. This development, addressed in our contribution, firstly puts Moore-sentences
in a multi-agent perspective of announcements of the form ‘I say to you that: p
is true and that you don’t believe that’, and, secondly, puts Moore-sentences in
a dynamic perspective of announcements that cannot be believed after being an-
nounced. This analysis goes beyond Moore and makes essential use of the tools
of dynamic epistemic logic. The dynamic point of view asks how an agent can
possibly come to believe (or know) that a Moore sentence ϕ is true. The only way
to achieve this seems to be by learning ϕ, or by learning some other sentence that
implies ϕ. But one can easily see that, when ϕ is a Moore sentence, the action of
learning it changes its truth value: the sentence becomes false after being learned,
though it may have been true before the learning! The same applies to any sen-
tence that implies ϕ. In terms of [Gerbrandy, 1999], an update with a Moore
sentence can never be “successful”: indeed, in Section 5.2, a successful formula
is defined as one that is always true after being announced. Observe that Moore
sentences have the opposite property: they are “strongly un-successful”, in the
sense that they are always false after being announced. As a consequence, they
are known to be un-successful: once their truth is announced, their negation is
known to be true. Van Benthem [2004] calls such sentences self-refuting.

There is nothing inherently paradoxical about these properties of Moore sen-
tences: the “world” that a Moore sentence is talking about is not simply the world
of facts, but a “world” that comprises the agent’s own beliefs and knowledge. In
this sense, the world is always changed by our changes of belief. Far from being
paradoxical, these phenomena can in fact be formalized within a consistent logic,
using e.g. the logic of public announcements in Section 5.1: using the notation
introduced there, !ϕ is the action of learning (or being announced) ϕ. If ϕ is a
Moore sentence of the form p ∧ ¬Kp, it is easy to check the validity of the dy-
namic logic formulas [!ϕ]¬ϕ and [!ϕ]K¬ϕ. The first says that Moore sentences are
strongly un-successful; the second says that Moore sentences are self-refuting. As
argued in [van Benthem, 2004], self-refuting sentences are essentially un-learnable.
This explains why a Moore sentence can never be known or believed: because it
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can never be learned.
A similar analysis applies to the doxastic versions p ∧ ¬Bp of Moore sentences.

But, in the case of belief, this phenomenon has even more far-reaching conse-
quences: as pointed out by van Ditmarsch [2005] and others, the un-successfulness
of Moore sentences shows that the standard AGM postulates for belief revision
(in particular, the “Success” postulate) cannot accommodate higher-order beliefs.
This observation leads to the distinction, made in the dynamic-epistemic litera-
ture [van Benthem, 2006; Baltag and Smets, 2006a; Baltag and Smets, 2007b],
between “static” and “dynamic” belief revision. As shown in Section 7.2, in the
presence of higher-order beliefs the AGM postulates (even in their multi-agent
and “knowledge-friendly” versions) apply only to static belief revision.

3.6 The Knower paradox

Related to the phenomenon of Moore-sentences is what comes under the name of
‘paradox of the knower’, also known as Fitch’s paradox [Brogaard and Salerno,
2004]. The general verification thesis states that everything that is true can be
known to an agent; formally, if we introduce a modal possibility ♦ϕ to express the
fact that something can be achieved (by an agent), this says that the implication
ϕ → ♦Kϕ is true (in our world), for all formulas ϕ. The following argument,
due to Fitch, appears to provide a refutation of verificationism on purely logical
grounds. Take a true Moore sentence ϕ, having the form ψ ∧ ¬Kψ. By the
“verificationist” implication above, ♦Kϕ must be true. But then Kϕ must be
true at some possible world (or some possible future “stage”, achievable by the
agent). But, as we have already seen in the previous subsection, this is impossible
for Moore sentences: K(ψ ∧ ¬Kψ) is inconsistent, according to the usual laws of
epistemic logic. The only possible way out is to conclude that there are no true
Moore sentences; in other words, the implication ψ → Kψ holds for all formulas.
This simply trivializes the verificationist principle, by collapsing the distinction
between truth and knowledge: all truths are already known!

Numerous solutions for this paradox have been proposed; see [Wansing, 2002;
Tennant, 2002], for example. In particular, Tennant [2002] argues persuasively
that the verificationist principle should be weakened, by restricting its intended
applications only to those sentences ϕ for which Kϕ is consistent. In other words:
if ϕ is true and if it is logically consistent to know ϕ, then ϕ can be known. This
excludes the principle’s application to Moore sentences of the usual type.

An interesting take on this matter is proposed by van Benthem in [2004]: one
can interpret the modal possibility operator ♦ϕ above in a dynamic sense, namely
as the ‘ability’ to achieve ϕ by performing some learning action, e.g. an announce-
ment in the technical sense of Section 5, to follow. In other words, ‘ϕ is knowable’
is identified with ‘a true announcement can be made after which the agent knows
ϕ.’ In this interpretation, the above-mentioned verificationist thesis reads “what
is true may come to be known (after some learning)”, while its Tennant version
restricts this to sentences ϕ such that Kϕ is consistent. The Moore-sentences
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are obviously unknowable (by the agent to whose knowledge they refer). But van
Benthem [2004] shows that this interpretation is also incompatible with Tennant’s
weakened verificationist principle: in other words, there are sentences ϕ such that
Kϕ is consistent but still, ϕ → ♦Kϕ does not hold. A counterexample is the
formula (p ∧ ♦¬p) ∨K¬p. The dynamic epistemic logic of the ‘ability’ modality
♦ is completely axiomatized and thoroughly studied in [Balbiani et al., 2007].

3.7 The Hangman paradox

The Hangman paradox, also known as the Surprise Examination paradox, has a
relatively short history of about sixty years. Apparently the Swedish mathemati-
cian Lennart Ekbom heard a message on the radio during the second world war
announcing a civil defense exercise, which was to take place in the next week.
It was also announced that this exercise would be a surprise. Then he noticed
that there was something paradoxical about this announcement. [Kvanvig, 1998;
Sorensen, 1988, pp.253]. The paradox was first published by O’Conner in 1948.

Consider the following case. The military commander of a certain
camp announces on a Saturday evening that during the following week
there will be a “Class A blackout”. The date and time of the exercise
are not prescribed because a “Class A blackout” is defined in the an-
nouncement as an exercise which the participants cannot know is going
to take place prior to 6.00 p.m. on the evening in which it occurs. It
is easy to see that it follows that the exercise cannot take place at all.
It cannot take place on Saturday because if it has not occurred on the
first six days of the week it must occur on the last. And the fact that
the participants can know this violates the condition which defines it.
Similarly, because it cannot take place on Saturday, it cannot take
place on Friday either, because when Saturday is eliminated Friday is
the last available day and is, therefore, invalidated for the same reason
as Saturday. And by similar arguments, Thursday, Wednesday, etc.,
back to Sunday are eliminated in turn, so that the exercise cannot take
place at all. [O’Connor, 1948]

Many authors proposed various solutions to this paradox. Williamson [2000] ana-
lyzes it as an epistemic variety of the Sorites paradox. The first analysis that uses
dynamic epistemic logic was presented in [Gerbrandy, 1999], and found its final
form in [van Ditmarsch and Kooi, 2006] and [Gerbrandy, 2007]. According to Ger-
brandy, the commander’s statement is ambiguous between two possible readings
of what “Class A” means: the first reads “You will not know (before 6:00 on the
evening of the blackout) when the blackout will take place, given (the information
you have in) the situation as it is at the present moment”, while the second reads
“You will not know (before 6:00 of that evening) when it will take place, even after
you hear my announcement.” Gerbrandy chooses the first reading, and shows that
in fact there is no paradox in this interpretation, but only a Moore-type sentence:
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in this reading, the property of being “Class A” cannot remain true after the an-
nouncement. Unlike the previous puzzles however, there is also a more complex
temporal aspect that needs to be modeled by sequences of such announcements.
As for the second reading, Gerbrandy considers it to be genuinely paradoxical,
similar to more standard self-referential statements, such as the Liar Paradox.

3.8 Common knowledge

One of the important concepts involved in the study of social knowledge is that
of common knowledge. The idea is that common knowledge of a fact by a group
of people is more than just the individual knowledge of the group members. This
would be called mutual knowledge. Common knowledge is something more – what,
exactly, is an issue, as is how to model it in the kinds of models we are dealing
with.

Countries differ as to which side of the road one drives a car; the matter is one
of social and legal convention. As it happens, at the time of this writing all three
co-authors are living in countries in which people drive on the left. Suppose that
in one of those, the government decides to change the driving side. But suppose
that the change is made in a quiet way, so that only one person in the country,
say Silvanos, finds out about it. After this, what should Silvanos do? From the
point of view of safety, it is clear that he should not obey the law: since others
will be disobeying it, he puts his life at risk. Suppose further that the next day
the government decides to make an announcement to the press that the law was
changed. What should happen now? The streets are more dangerous and more
unsure this day, because many people will still not know about the change. Even
the ones that have heard about it will be hesitant to change, since they do not know
whether the other drivers know or not. Eventually, after further announcements,
we reach a state where:

The law says drive on the right and everyone knows (12). (12)

Note that (12) is a circular statement. The key point is not that everyone know
what the law says, but that they in addition know this very fact, the content of
the sentence you are reading.

This is an intuitive conception of common knowledge. Obviously it builds on the
notion of knowledge, and since there are differing accounts of knowledge there will
be alternative presentations of common knowledge. When we turn to the logical
formalism that we’ll use in the rest of this chapter, the alternative presentations
mostly collapse. The key here is to unwind a sentence like (12) into an infinite list:

α0: The law says drive on the right.

α1: α0, and everyone knows α0.

α2: α1, and everyone knows α1.

· · ·
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Each of these sentences uses knowledge rather than common knowledge. Each also
implies its predecessors. Taking the infinite conjunction

α0 ∧ α1 ∧ α2 ∧ · · · (13)

we arrive at a different proposal for common knowledge. As it happens, given the
kind of modeling that we are doing in this chapter, the fixed point account in (12)
and the infinite iteration account in (13) agree.

History An early paper on common knowledge is Friedell [1969]. This paper
contains many insights, both mathematical and social. In view of this, it is even
more noteworthy that the paper is not common knowledge for people in the field.
Probably the first commonly-read source in the area is David Lewis’ ‘Convention’
[Lewis, 1969]. Heal’s 1978 paper [Heal, 1978] came a decade later and is still a
good source of examples. In the area of game theory, Aumann’s [1976] gives one
of the first formalizations of common knowledge. McCarthy formalizes common
knowledge in a rather off-hand way when solving a well-known epistemic riddle, the
Sum and Product-riddle [McCarthy, 1990] (although at the time it was unknown
to him that this riddle originated with the Dutch topologist Freudenthal [1969])
as an abstract means towards solving the Sum and Product-riddle. McCarthy’s
work dates from the seventies but was only published later in a collection of his
work that appeared in 1990.

Concerning the formalizations, here is how matters stand in two textbooks
on epistemic logic: Fagin et al. [1995] defines common knowledge by transitive
closure, whereas Meyer and van der Hoek [1995] define it by reflexive transitive
closure. There is a resurgence of interest in variants of the notion, e.g., Artemov’s
evidence-based common knowledge, also known as justified common knowledge
[Artemov, 2004]. Another interesting variant is relativized (or conditional) com-
mon knowledge, which came to play an important role in some recent developments
of dynamic epistemic logic [van Benthem et al., 2006b; Kooi, 2007].

4 EPISTEMIC LOGIC: WHAT AND WHY?

We have introduced logical systems along with our representations in Section 2.
We have presented a set of logical languages and some semantics for them. One of
the first things one wants to do with a language and a semantics is to propose one
or another notion of valid sentences; informally, these are the sentences true in
all intended models. In all the settings of this paper, this information on validity
includes the even more useful information of which sentences semantically imply
which others. Then one wants to present a proof system for the valid sentences.
There are several reasons why one would want an axiomatic system in the first
place. One might wish to compare alternative presentations of the same system.
One might also want to “boil a system down” to its essentials, and this, too, is
accomplished by the study of axiomatic systems. Finally, one might study a system
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all sentential validities
H ↔ ¬T exclusivity
¬KH,¬KT basic ignorance axioms
K¬ϕ→ ¬Kϕ consistency of knowledge
K(ϕ→ ψ) → (Kϕ→ Kψ) distribution
Kϕ→ ϕ veracity
Kϕ→ KKϕ positive introspection
¬Kϕ→ K¬Kϕ negative introspection
From ϕ and ϕ→ ψ, infer ψ modus ponens
From ϕ, infer Kϕ necessitation

Figure 1. A logical system for valid sentences concerning two exclusive alternatives
and a very simple semantics of K. The axioms are on top, the rules of inference
below.

in order to see whether it would be feasible (or even possible) for a computer to
use the system. We are not going to pursue this last point in our chapter, but we
instead emphasize the “boiling down” aspect of logical completeness results.

4.1 Logic for ignorance of two alternatives

We return to our earliest scenario of Section 2, one person in a room with a
concealed coin. We have a language including a knowledge operator K and a
semantics for it using just one model. We write |= ϕ to say that ϕ is true in that
model. The object of our logical system is to give an alternative characterization
of the true sentences.

Figure 1 contains our logical system truth. This paper is not the place to learn
about logical systems in a detailed and deep way, but in the interests of keeping
the interest of philosophers who may not know or remember the basics of logic,
we do hope to provide a refresher course.

We say that ϕ is provable in our system if there is a sequence of sentences each
of which is either an axiom or follows from previous sentences in the sequence by
using one of the two rules of inference, and which ends in ϕ. In this case, one
would often write � ϕ, but to keep things simple in this chapter we are not going
to use this notation.

Here is a simple deduction in the logic, showing that � K¬KT:

1. H ↔ ¬T
2. (H ↔ ¬T) → (¬T → H)
3. ¬T → H
4. K(¬T → H)
5. K(¬T → H) → (K¬T → KH)
6. K¬T → KH

7. ¬KH
8. ¬KH → ((K¬T → KH) → ¬K¬T)
9. (K¬T → KH) → ¬K¬T
10. ¬K¬T
11. ¬K¬T → K¬K¬T
12. K¬K¬T
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Line 1 is our exclusivity axiom and line 7 the basic ignorance axiom. A distribution
axiom is found in line 5, and negative introspection in 11. This deduction uses
propositional tautologies in lines 2 and 8, modus ponens in 3, 6, 9, 10, and 12, and
necessitation in 4.

We mentioned before that there are several different reasons why one would
construct a logical system to go along with a particular semantics. The first,
perhaps, is that by formulating sound principles, one uncovers (or highlights)
hidden assumptions. In this case, we can see exactly what the assumptions are in
this example: they are the principles in the figure. The interesting point is that
these assumptions are all there is : if one reasons with the system as above, then
they will obtain all the truths.

PROPOSITION 1. The logical system above is sound and complete: � ϕ iff ϕ is
true in the model.

The point of this completeness theorem is that we have isolated all the assump-
tions in the scenario.

One remark which is of only minor significance in this discussion is that the
veracity axioms Kϕ→ ϕ may be dropped from the system. That is, all instances
of them are provable anyway from the other axioms. The reason for including
them is that they will be needed in all of the future systems.

Recall that the system here is based on our discussion at the beginning of
Section 2. We then went on in Section 2.1 to the situation after Amina looks.
It is not hard to re-work the logical system from Figure 1 to handle this second
situation. We need only discard the basic ignorance axioms ¬KH and ¬KT, and
instead take KH so that we also get H. In particular, all of the sound principles
that we noted for the earlier situation continue to be sound in the new one.

4.2 Logic can change the world

There is another intuition about knowledge pertinent to the simple scenario that
we have been dealing with. It is that what Amina knows about a coin in a closed
box is the same as what she would know if the box were flipped over. In this section,
we show what this means.

We consider the same language as before, except we add an operator flip to
indicate the flipping the box over. For the semantics, let us begin with two models
on the same state set.

1. M , a model with two states s and t, with the information that H is true at
s and false at t, and T is true at t and false at s.

2. N , a model with two states s and t, with the information that H is true at
t and false at s, and T is true at s and false at t.

Then we define M,u |= ϕ and N, u |= ϕ in tandem, the main points being that

M,u |= flipϕ iff N, u |= ϕ
N, u |= flipϕ iff M,u |= ϕ
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flip H ↔ T flipping
ϕ↔ flip flipϕ involution
flip¬ϕ↔ ¬flipϕ determinacy
flip (ϕ→ ψ) → (flipϕ→ flipψ) normality
Kϕ↔ flipKϕ invariance
From ϕ, infer flipϕ necessitation

Figure 2. The logical system for knowledge and flipping. We also need everything
from Figure 1, except the basic ignorance axioms (these are derivable).

Finally, we say that ϕ is valid if it holds at both states in both models. (This
turns out to be the same as ϕ holding in any one state in either model.)

We present a logical system for validity in Figure 2. Perhaps the first exercise
on it would be to prove the other flipping property: flip T ↔ H. We did not include
in the figure the general principles of knowledge that we have already seen, but
we intend them as part of the system. (These are the consistency, distribution,
veracity, and introspection axioms; and the necessitation rule.) Note that the
invariance axiom Kϕ ↔ [flip ]Kϕ is exactly the opening of our discussion. We
refrain from presenting the completeness proof for this system, but it does hold.
One thing to note is that the invariance axiom of this system makes the earlier
ignorance axioms ¬KH and ¬KT unnecessary: they are derivable in this system.

4.3 Modal logics of single-agent knowledge or belief

At this point, we review the general topic of logics of knowledge. The basic
language begins with a set P of atomic propositions. From these sets, a language
L is built from the atomic propositions using the connectives of classical logic and
also the knowledge operator K. We get a language which is basically the same as
what we saw in Section 2, except that our set of atomic propositions is taken to
be arbitrary, not just {H,T}.

Semantics We interpret this language on relational models. These are tuples
M = 〈S,R, V 〉 consisting of a domain S of states (or ‘worlds’), an accessibility
relation R ⊆ S × S, and a valuation (function) V : P → P(S). We usually write
Vp instead of V (p). We also write s→ t instead of R(s, t). We call these semantic
objects relational models, but they are more often called Kripke models. We call a
tuple of the form (M, s), where M is a model and s is a state in it, is an epistemic
state.

We then define the interpretation of each sentence ϕ on an epistemic state
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(suppressing the name of the underlying model):

[[p]] = Vp

[[¬ϕ]] = [[ϕ]]
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
[[Kϕ]] = {s : whenever s→ t, t ∈ [[ϕ]]}

It is more common to find this kind of definition “re-packaged” to give the inter-
pretation of a sentence at a given point. This rephrasing would be presented as
follows:

s |= p iff s ∈ Vp

s |= ¬ϕ iff s 	|= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= Kϕ iff for all t ∈ S : s→ t implies t |= ϕ

The two formulations are completely equivalent. At the same time, using one
notation over another might lead different people to different insights or problems.

Further semantic definitions A sentence ϕ is valid on a model M , notation
M |= ϕ, if and only if for all states s in the domain of M : s |= ϕ. A formula ϕ is
valid, notation |= ϕ, if and only if for all models M (of the class of models for the
given parameters of A and P ): M |= ϕ. That is, ϕ holds on all epistemic states.

Logic and variations on it The logical system for validity is a sub-system of
one which we already have seen. Look back at Figure 1, and take only the propo-
sitional tautologies, modus ponens, the distribution axiom, and the necessitation
rule. This logical system is called K. Every book on modal logic will prove its
completeness: a sentence is valid in the semantics just in case it can be proved
from the axioms using the rules.

What’s the point? For the modeling of knowledge, all we have so far is a spare
definition and logic: An agent lives in a world and can see others. What it knows
in a given world is just what is true in the worlds it sees. This seems a far cry from
a full-bodied analysis of knowledge. The logical completeness result underscores
the point. Any agent who “knew” things in the manner of this semantics would
exemplify properties indicated by the logic. In particular, it would act as if the
distribution axiom and necessitation rule held. The former, turned around a bit,
says that the agent would be a perfect reasoner : if it knows ϕ and also knows
ϕ → ψ, then it automatically and effortlessly knows ψ. Necessitation says that
it also knows all the general features of this logic. Thus, the agent is logically
omniscient. And one would be hard-pressed to maintain that such an agent “knew”
in the first place. For it is even possible that in some situations (models) the agent
would “know” things which are false: this might well happen the agent lived in a
world which was not among those it considered possible.
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Ax formal statement property of R interpretation
K K(ϕ→ ψ) → (Kϕ→ Kψ) (none) closed under modus ponens
T Kϕ→ ϕ reflexive veracity
D Kϕ→ ¬K¬ϕ serial consistency
4 Kϕ→ KKϕ transitive positive introspection
5 ¬Kϕ→ K¬Kϕ Euclidean negative introspection

Figure 3. Axiom schemes of modal logic with their relational correspondents and
epistemic interpretations.

This leads to our next point. If one wants to model agents with certain
epistemically-desirable properties (see below for these), one can impose math-
ematical conditions on the accessibility relation of models under consideration.
Then one changes the definition of valid from true in all epistemic states to true
in all epistemic states meeting such-and-such a condition.

To see how this works, we need a definition. A frame is the same kind of
structure as what we are calling a model, but it lacks the valuation of atomic
sentences. So it is just a pair F = 〈S,R〉, with R a relation on S. (In other terms,
a frame is a graph.) Given a sentence ϕ in our logic, we say that F |= ϕ if for all
valuations V : P → P(S), every s ∈ S satisfies ϕ in the model 〈S,R, V 〉.

Figure 3 presents well-known correspondences between conditions on a frame
and properties of the logic. One example: a frame F satisfies each instance of D
(say) iff F meets the condition listed that every point in it has a successor. is
related by R to some point or other. Reflexivity means that every point is related
to itself. Transitivity means that if x is related to y, and y to z, then x is related
to z. The Euclidean condition mentioned in connection with the 5 axioms is

(∀x)(∀y)(∀z)((xRy ∧ xRz) → yRz).

There is a further aspect of the correspondence. If one wants to study the
sentences which are valid on, say, transitive models, then one need only add the
corresponding axiom (in this case Kϕ → KKϕ) to the basic logic that we men-
tioned above. On a conceptual level, we prefer to turn things around. If one wants
to model agents which are positively introspective in the sense that if the know
something, then they know that they know it, then one way is to assume, or argue,
that they work with transitive models. The same goes for the other properties,
and for combinations of them.

There are many modal systems indeed, but we wish to mention only a few here.
We already have mentioned K. If we add the axioms called T and 4, we get a
system called S4. It is complete for models which are reflexive and transitive, and
intuitively it models agents who only know true things and which are positively
introspective. If one adds the negative introspection axioms 5, one gets a system
called S5. The easiest way to guarantee the S5 properties is to work with relations
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which are reflexive, symmetric, and transitive (equivalence relations), for these are
also Euclidean.

Turning from knowledge to belief, the T axiom is highly undesirable. So logics
appropriate for belief will not have T. But they often have D, the seriality axioms.
These may be interpreted as saying that if an agent believes ϕ, then it does not
at the same time believe ¬ϕ. Probably the most common logic of belief is KD45,
obtained by adding to K the other axioms in its names. KD45 is complete with
respect to models which have the properties listed above. When studying belief,
one usually changes the name of the modality from K to B, for obvious reasons.

We wish to emphasize that all of the intuitive properties of knowledge and
belief discussed in this section, and indeed in this chapter as a whole, are highly
contestable. Using logic does not commit one to any of those properties. But logic
can help to clarify the commitments in a given form of modeling. For example, any
modeling of knowledge using relational semantics will always suffer from problems
having to do with logical omniscience, as we have seen.

4.4 Multi-agent epistemic logic

The formal move from the basic modal logic of the last section its multi-agent
generalization is very easy. One begins with a set A of agents in addition to the
set of atomic propositions. Then the syntax adds operators Ka, and we read Kaϕ
as “a knows ϕ.” The semantics then moves from the models of the last section to
what we shall call epistemic models. These are tuples 〈S,R, V 〉 as before, except
now R is an accessibility (function) R : A→ P(S × S). That is, it is a family of
accessibility relations, one for each agent. We usually write Ra instead of R(a).
Further, we write s→a t instead of (s, t) ∈ Ra.

EXAMPLE 2. We are going to present an example which hints at the applicability
of our subject to the modeling of games.

Consider three players Amina, Bao, and Chandra (a, b, c). They sit in front of
a deck consisting of exactly three cards, called clubs, hearts, and spades. Each is
dealt a card, they look, and nobody sees anyone else’s card. We want to reason
about knowledge in this situation. It makes sense to take as atoms the nine
elements below

{Clubsa,Clubsb, . . . ,Spadesb,Spadesc}.
The natural model for our situation has six states. It is shown in a slightly

re-packaged form in Figure 4. We call the model Hexa. The states are named
according to who has what. For example, ♣♥♠ is the state where Amina has
clubs, Bao hearts, and Chandra spades. The lines between the states have labels,
and these indicate the accessibility relations. So Bao, for example, cannot tell the
difference between ♥♣♠ and♠♣♥: if the real deal were one of those, he would think
that it could be that same deal, or the other one (but no others).

We mentioned that the picture of Hexa differs slightly in its form from what
the official definition calls for. That version is mathematically more elegant but
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does not immediately lend itself to a picture. It would have, for example,

V (Clubsa) = {♣♥♠,♣♠♥}
· · ·

V (Spadesc) = {♣♥♠,♥♣♠}
Ra = {(♣♥♠,♣♠♥), (♥♣♠,♥♠♣), (♠♣♥,♠♥♣)}

· · ·

We can then evaluate sentences in English by translating into the formal language
and using the semantics. Here are some examples.

Amina knows she has the heart card. We translate to KaHeartsa. The semantics
in Hexa is [[KaHeartsa]] = {♥♣♠,♥♠♣}. (In more detail: in each of the two worlds
♥♣♠ and ♥♠♣, every world that Amina thinks is possible belongs to V (Heartsa).
And if s is one of the four other worlds, there is some world accessible from s for
Amina which does not belong to V (Heartsa). For example, in s = ♣♥♠, the world
s itself is accessible for Amina, and she does not have hearts there.) That is, our
sentence is true exactly at ♣♥♠ and ♠♥♣. Note that this is precisely the set of
worlds where Amina indeed has hearts. So the sentence Amina has hearts if and
only if she knows she has hearts comes out true at all states.

If Bao has spades, Chandra has clubs. This is Spadesb → Clubsc. The semantics
is

{♣♥♠,♥♣♠,♥♠♣,♠♣♥,♠♥♣}.
If Amina has hearts, then she knows that if Bao has spades, Chandra has clubs.

The translation is
Heartsa → Ka(Spadesb → Clubsc).

This true at all states.
Bao considers it possible that Amina has spades but actually Amina has clubs.

We translate “consider it possible that ϕ” by “does not know that ϕ is false.” So
our sentence here is ¬Kb¬Spadesa ∧Clubsa. Usually one prefers to avoid negation
by introducing an abbreviation. So if we say that K̂bϕ abbreviates ¬Kb¬ϕ, then
we may read this as Bao considers ϕ possible and translate our sentence as above.
Its semantics is {♣♥♠}.

The last sentence shows the duality between “consider possible” and “know”.
This phenomenon of dual definitions is something we shall see later as well.

Logic We define validity exactly as in the last section, but using the generalized
language and semantics. Given a language and a semantics, one task for logic is
to determine the set of sentences which are valid. In particular, we might ask for
a nice logical system for the valid sentences, since this may well give insight into
the underlying assumptions in the model. Now in what we have been discussing
in this section, we might seek at least three logical systems:

1. A system for validity on the model Hexa.
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Figure 4. The model Hexa, with the accessibility relations pictured as edges be-
tween the states. For example, Amina cannot distinguish ♣♥♠ from ♣♠♥ as she
holds clubs in both deals. But Bao cannot distinguish ♣♥♠ from ♠♥♣ as he holds
hearts in both.

2. A system for validity on all models whatsoever.

3. A system for validity on all models that are “basically similar” to Hexa.

For the first question, we modify the system of Figure 1 for ignorance of two
alternatives. The axioms that actually pertain to H and T must be replaced, of
course. Instead of exclusivity, we take an axiom that says, informally, for exactly
one of the six states s of Hexa, all atoms true in s hold, and all not true in s do not
hold. We also add an axiom saying that If Amina has clubs, then she knows it, and
similarly for the other players and cards, and also that Amina does not know which
card any other player holds. All of the rest of the axioms are valid in this model,
as are the rules. Each statement of the old system would be replaced by three,
one for each player. So one of the introspection axioms would be Kbϕ→ KbKbϕ.
In particular, the introspectivity and necessitation principles are valid.

In passing, we note that this logical system has no interaction properties between
the knowledge of different agents. That is, none of the axioms mix Ka and Kb

for different a and b. Mathematically, this means that the generalization of single-
agent knowledge to the multi-agent case will be almost trivial. But there are
two caveats: first, the phenomenon of common knowledge does involve discussions
of different agents’ knowledge, and so it turns out to be harder to study. And
second, it really is possible to have situations where interaction properties make
sense. For example, suppose one wants to model situations where everything Bao
knows Chandra also knows. In the semantics, one would want Rc ⊆ Rb. And then
in the logic one could add Kbϕ→ Kcϕ.

For the second question above, the fact that we are dealing with a larger class
of models means that fewer logical principles are sound. The only sound principles
would be the propositional tautologies and the distribution axioms, and the rules
of modus ponens and necessitation.
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The last question is obviously not precise. The point of raising it is that one can
make precise the sense in which games are, or are not, similar by using the logical
principles that hold. For example, one often simplifies matters by assuming that
adversaries are perfect reasoners, and in this setting it is natural to assume the
introspectivity principles in the modeling. That is, one works only with models
where those principles turn out to be sound. The easiest way to arrange this is to
look at the chart in Figure 3. If each accessibility relation →a is reflexive, tran-
sitive, and euclidean, then the model will satisfy both introspectivity assertions.
(This holds no matter what the valuation V happens to do.) It turns out that a re-
lation with these properties is automatically symmetric and hence an equivalence
relation. Moreover, an equivalence relation on a set is equivalently formulated as
a partition of the set. So one often finds the tacit assumption in much of the game
theory/economics literature that the models used are partition models consisting
of a set S and a partition of S for each player.

Identity conditions on models We first looked at announcements in Sec-
tion 2.2. In discussing (4) and (5), we noted the need for principled identity
conditions on relational models. Fortunately, the general study of relational mod-
els and their logical systems gives us a usable condition, called bisimulation. This
condition is coarser than isomorphism, does what we want (in particular, it tells
us that (4) and (5) ought to be identified), and has an intuitive resonance as well.
For the formal definition and much more, see any text on modal logic, for example
Blackburn et al. [2001].

4.5 Common knowledge

We have discussed the idea of common knowledge in Section 3.8. We turn now
to the formalization on top of what we saw in Section 4.4 above. We present a
generalization of our previous concept, however. For each group B ⊆ A, we want
notions of group knowledge for the set B and common knowledge for the set B.
This last notion has the same intuitive basis as common knowledge itself. For
example, it is common knowledge among Englishmen that one drives on the left,
but this common knowledge does not hold for the entire world.

For the syntax of group knowledge, we add operators EB to the language of
multi-agent epistemic logic. The semantics is given by

[[EBϕ]] =
⋂

a∈A

[[Kaϕ]].

This means that we (straightforwardly) translate EBϕ as Everyone knows ϕ. In
the case of finitely many agents (the assumption in practically all papers on the
topic), EBϕ may be regarded as an abbreviation.

EXAMPLE 3. We return to the model Hexa from Section 4.4 (see Figure 4). We
have

♣♥♠ |= E{a,b}¬(Spadesa ∧ Clubsb ∧ Heartsc).
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That is, both Amina and Bao know that the deal of cards is not ♠♣♥. However,
despite this, each does not know that the other knows this fact.

We next turn to common knowledge. The syntax adds operators CBϕ to the
language, exactly as with group knowledge. The semantics is more problematic,
and indeed there are differing proposals in the literature. We follow the most
common treatment. One essentially takes the unwinding of the fixed point that
we saw in (13) in Section 3.8 as the definition, and then the fixed point property
becomes a semantic consequence later on.

For the semantics, for each group B we pool all the accessibility relations for
the members of B together, and then take the reflexive-transitive closure:

R∗
B ≡ (

⋃
a∈B

Ra)∗.

(see below for an explanation). Then we interpret via

s |= CBϕ iff for all t ∈ S : R∗
B(s, t) implies t |= ϕ

Alternatively said, CBϕ is true in s if ϕ is true in any state sm that can be
reached by a (finite) path of zero or more states s1, . . . , sm such that, for not neces-
sarily different agents a, b, c ∈ B: Ra(s1, s2), Rb(s2, s3), and . . ., andRc(sm−1, sm).
A path of zero states is just a single state alone. Hence if CBϕ is true at s, then
automatically ϕ is true at s as well.

As an example of both the formal and informal concepts, we consider an n-
person muddy children scenario (see Section 3.1), before any announcement that
at least one agent is muddy. It is easy to describe the model: it has 2n states
with the rest of the structure determined in the obvious way. Then it is common
knowledge at all states that no agents know their own state. More interesting is
the comment that in this model, if s is a state and every agent knows ϕ at s, then
ϕ is already common knowledge at all states.

The logic of common knowledge adds two principles to the basic multi-agent
epistemic logic. Those are the Mix Axiom:

CBϕ→ ϕ ∧ EBCBϕ

(so-called because it deals with the interactions of the the two operators of this
section) and the induction rule:

from χ→ ψ and χ→ Kaχ for all a ∈ B, infer χ→ CBψ.

Using this logic, one can prove the important properties of common knowledge.
For example, it is idempotent :

CBϕ↔ CBCBϕ.

The interesting direction here says that if ϕ is common knowledge in a group, then
the fact of its being common knowledge is itself common knowledge in the group.
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4.6 Belief-knowledge logic

Intuitively, belief and knowledge are related but different. However, we have
heretofore conflated the two notions. We present here the simplest possible system
which can sensibly separate the two by incorporating both at the same time with
different semantics. It and the logical axioms are taken from Meyer and van der
Hoek [1995].

We fix sets A of agents and P of atoms. To separate the two notions, we need
a language with different operators K and B.

A knowledge-belief model (KB-model) is a Kripke model of the form 〈S,RK
a ,

RB
a , V 〉a∈A, where S is set of states, RK

a and RB
a are binary accessibility relations

in P(S × S), and V is a function from P to P(S). We write s∼a t instead of
(s, t) ∈ RK

a , and s→a t instead of (s, t) ∈ RB
a . As the letters K and B indicate, the

first relation ∼a is meant to capture the knowledge of agent a, while the second
→a captures the agent’s beliefs.

A KB model is required to satisfy the following conditions: ∼a is an equivalence
relation; →a is serial; if s∼a t and s→a w, then t→a w; and finally, →a is included in
∼a . So the modeling reflects the following intuitions: the truthfulness and intro-
spection of of knowledge, full belief introspection (agents know their own beliefs),
beliefs are consistent, and knowledge implies belief. It is not necessary to assume
that →a is transitive and Euclidean, since these properties immediately follow from
the above conditions. So we also have for free that belief is introspective, in the
usual sense.

Notice also that, as observed on the example in Section 2.3, the knowledge
relation ∼a is recoverable from the belief relation →a , via the following rule:

s∼a t iff (∀w)(s→a w iff t→a w). (14)

To see this, first assume that s∼a t. Then also t∼a s. From this and one of the
conditions in a KB model, we get the right-hand side of (14). And if the right-
hand side holds, we show that s∼a t. First, there must be some w so that s→a w.
For this w we also have t→a w. And then using the fact that ∼a is an equivalence
relation included in →a , we see that s∼a t.

So, in fact, one could present KB-models simply as belief models 〈S, →a , V 〉,
where →a is transitive, serial and Euclidean, and one can take the knowledge
relation as a defined notion, given by the rule (14) above. We interpret the logical
system in KB-models via

[[Kaϕ]] = {s ∈ S : t ∈ [[ϕ]], for all t such that s∼a t}
[[Baϕ]] = {s ∈ S : t ∈ [[ϕ]], for all t such that s→a t} (15)

EXAMPLE 4. The easiest example is a two-state model for ignorance of two
alternatives, say heads and tails, together with a belief in one of them, say heads.
Formally, we have one agent, so we drop her from the notation. There are two
states s and t, for H and T. The relation → is H → H and T → H. The relation
∼ therefore relates all four pairs of states. Then at both states BH ∧ ¬KH. In
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particular, the agent believes heads at the tails state t. Hence we have our first
example of a false belief. But agents in KB-models are not so gullible that they
believe absolutely anything: ¬B(H ∧ T), for example. And indeed, the seriality
requirement prohibits an agent from believing a logical inconsistency.

The logic is then axiomatized by the S5 system for knowledge, the KD45 system
for belief, and two connection properties: First, Baϕ→ KaBaϕ. So an agent may
introspect on her own beliefs. (It also follows in this logic that ¬Baϕ→ Ka¬Baϕ.)
We should mention that introspection about beliefs is less controversial than intro-
spection about knowledge. If we take knowledge to be a relation between an agent
and an external reality, then it is as problematic to account for an agent’s knowl-
edge of their own knowledge as it is to account for any other type of knowledge.
But to the extent that belief is an “internal” relation, it seems easier to say that
fully-aware agents should have access to their own beliefs.

The second logical axiom connecting knowledge and belief is Kaϕ→ Baϕ. This
reiterates an early point: we are thinking of knowledge as a strengthening of belief.
It is sound due to the requirement that →a be included in ∼a .

Variations There are some variations on the soundness and completeness result
which we have just seen. Suppose one takes an arbitrary relation →a , then defines
∼a from it using (14), and then interprets our language on the resulting structures
by (15). Then ∼a is automatically an equivalence relation, and so the S5 axioms
for knowledge will be sound. Further, the two connection axioms automatically
hold, as does negative introspection. Continuing, we can add impose conditions on
→a (such as seriality, transitivity, the Euclidean property, or subsets of these), and
then study validity on that class. In the logic, one would take the corresponding
axioms, as we have listed them in Figure 3. In all of the cases, we have completeness
results.

4.7 Conditional doxastic logic

We now re-work the logical system of Section 4.6, so that it can handle conditionals
in the way that we did in Section 2.4. The logical system is based on Board [2004],
and Baltag and Smets [2006a; 2006b; 2006c]. Following the latter, we’ll call it
conditional doxastic logic (CDL).

Its syntax adds to propositional logic statements of the form Bα
aϕ, where a is

an agent and α and ϕ are again sentences in the logical system. This should be
read as “If a were presented with evidence of the assumption α in some world,
then she should believe ϕ describes the world (as it was before the presentation).”

The simplest semantics for this logic uses plausibility models. These are also
special cases of the belief revision structures used in Board [2004]. (We shall see
the general notion at the end of this section.) Plausibility frames are Kripke
structures of the form (S,≤a)a∈A, consisting of a set S endowed with a family
of locally pre-wellordered relations ≤a, one for each agent a. When S is finite, a
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locally pre-wellordered relation on S is just one that is reflexive, transitive and
weakly connected both forwards and backwards3, i.e. s ≤a t and s ≤a w implies
that either t ≤a w or w ≤a t, and also t ≤a s and w ≤a t implies that either t ≤a w
or w ≤a t. Equivalently, we have a Grove system of spheres, just as in Section
2.3, consisting of a number of (disjoint) “smallest spheres” (listing the worlds “in
the center”), then surrounding them the next smallest spheres (containing worlds
a little less plausible than these central ones), then the next ones, having worlds
a little less plausible than these, etc. To match the notion of local pre-wellorder
above (again, in the finite case), we need to assume that every world belongs to
some sphere, and that if two spheres intersect or are both included in a larger
sphere, then one is included in the other.

As for Kripke models in general, a plausibility model is a tuple M = (S,≤, V ),
where (S,≤) is a plausibility frame and V is a valuation on it. A doxastic state is
a tuple of the form (M, s), where M is a plausibility model and s ∈M .

REMARK 5. For readers of van Benthem and Martinez’ Chapter 3b, we mention
that our orderings go the other way from theirs: for them, “more plausible” is
“upward” in the ordering, and for us it is “in the center” or “lower down”.

As in the example in Section 2.3, we define a knowledge (indifference) relation
by putting

s∼a t iff either s ≤a t or t ≤a s.

Plausibility models for only one agent have been used as models for AGM be-
lief revision in [Gärdenfors, 1988; Segerberg, 1998; Spohn, 1988]. The additional
indifference relations turn out to be useful in modeling, as we indicate shortly.

Similarly, we define a belief relation by putting:

s→a t iff s∼a t and (∀u)(s∼a u→ t ≤a u) .

It is easy to see that ∼a and →a satisfy all the postulates of a KB model. More
generally, we obtain a conditional belief relation by putting, for any set X ⊆ S of
states:

s −→a,X t iff s∼a t, t ∈ X, and (∀u)(s∼a u & u ∈ X → t ≤a u) .

In other words, s −→a,X t if a considers t to be possible in s, if t ∈ X , and if t
is among the most plausible worlds for a with these two conditions. So here we
see the basic idea: reasoning about a’s hypothetical beliefs assuming α involves
looking at the relation −→a,X where X = [[α]].

Observe that the belief relation →a is the same as the conditional belief relation
−→a,S , where S is the set of all states. As a passing note, for each X ⊆ S we can
use the relations −→a,X to make a structure which is almost a KB-model in the
sense of Section 4.6. Take S for the set of worlds, −→a,X for the belief relation for
each agent a, take the knowledge relation ∼a for a as above, and use the same

3This last property is also known as no branching to the left or to the right.
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valuation in SX as in S. The only property of KB-models lacking is that the belief
relations might fail to be serial: a state s has no −→a,X -successors if X is disjoint
from the ∼a -equivalence class of s. This makes sense: seriality corresponds to
consistency of belief; but X being disjoint from the ∼a -equivalence of s corresponds
to conditionalizing on a condition X that is known (with absolute certainty) to
be false: the resulting set of conditional beliefs should be inconsistent, since it
contradicts (and at the same time it preserves) the agent’s knowledge.

For the semantics, we say

[[Bα
aϕ]] = {s ∈ S : t ∈ [[ϕ]], for all t such that s −→a,X t, where X = [[α]]}

(16)
In other words, to evaluate a doxastic conditional, a looks at which of her possible
worlds are the most plausible given the antecedent α, and then evaluates the con-
clusion on all of those worlds. If they all satisfy the conclusion ϕ of the conditional,
then a believes ϕ conditional on α. It is important that the evaluation take place
in the original model.

EXAMPLE 6. The model S from Section 2.4 had four worlds u, v, w, x. Amina’s
plausibility relation ≤a is essentially the ordered partition: {v, w} < {u, x}. Bao’s
plausibility relation is the reflexive closure of the relation {(v, w), (w, v)}. We are
interested in sentences Bα

aϕ, where α = KbH ∨ Kb¬H. Let X = [[α]] = {u, x}.
Then −→a,X relates all four worlds to u and x. Our semantics in (16) is equivalent
to what we used in (11). Note as well that the right-hand model in (8) shows −→a,S

and −→b,S .

Knowledge in plausibility models There are two equivalent ways to define
knowledge in plausibility models. One can use the definition (15) applied directly
to the ∼a relations introduced above, saying that

s |= Kaϕ iff s∼a t implies t |= ϕ.

Alternatively, one can use the following observation to get an intuitively appealing
reformulation.

PROPOSITION 7. Let S be a plausibility model and s ∈ S. The following are
equivalent:

1. s |= Kaϕ.

2. s |= B¬ϕ
a ⊥, where ⊥ is a contradiction such as p ∧ ¬p.

3. s |= B¬ϕ
a ϕ.

4. s |= Bα
aϕ, for every sentence α.

Here is the reasoning: If (1) holds, then s has no −→a,X -successors at all, where
X = [[¬ϕ]]. This means that the next two assertions hold vacuously. Also, notice
that, for every set X , s −→a,X t implies s∼a t. Hence, if (1) holds then, for any
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Syntax ϕ ::= p|¬ϕ|ϕ ∧ ψ|Bα
aϕ

Definition Kaϕ := B¬ϕ
a ϕ (knowledge)

Main Axioms Bα
aα hypothetical acceptance

Kaϕ→ ϕ veracity
Kaϕ→ Bα

aϕ persistence of knowledge
Bα

aϕ→ KaB
α
aϕ positive belief introspection

¬Bα
aϕ→ Ka¬Bα

aϕ negative belief introspection
¬Bα

a¬ϕ→ (Bα∧ϕ
a θ ↔ Bα

a (ϕ→ θ)) minimality of revision

Figure 5. Syntax and axioms for conditional doxastic logic. We also assume Modus
Ponens, as well as Necessitation and the (K) axiom for Bα

a .

sentence α, ϕ is true at all −→a,X -successors of s, where X = [[α]]. Therefore (4)
holds as well. Conversely, (4) clearly implies (3); also, if either of (2) or (3) hold,
then the semantics tells us that s has no −→a,X -successors, so every t∼a s must satisfy
ϕ; i.e., (1) must hold.

A proposal going back to Stalnaker [1968] defines “necessity”4 in terms of con-
ditionals, via the clause (3) above. This contains an idea concerning our notion of
“knowledge”: what it means to know ϕ (in this strong sense) is that one would
still believe ϕ even when hypothetically assuming ¬ϕ.

Finally, (4) can be related to the “defeasibility analysis” discussed in Section
3.4. Indeed, what is says is that our notion of knowledge satisfies a stronger version
of this analysis than the original one: our knowledge is the same as “absolutely
unrevisable” belief. One “knows” ϕ (in this absolute sense) if giving up one’s
belief in ϕ would never be justified, under any conditions (even when receiving
false information).

The logic We list a complete axiomatization in Figure 5. Note that in the
syntax, we take conditional belief as the only basic operator, and define knowledge
via (3). Verifying the soundness of most of the axioms is easy, and we discuss only
the principle of minimality of revision. Let X = [[α]]. Let Y = [[α ∧ ϕ]], so
Y ⊆ X . Suppose that s |= ¬Bα

a¬ϕ. So there is some t so that s −→a,X t and t |= ϕ.
This means that, for all w, we have s −→a,X w iff s −→a,Y w. We first show that if
s |= Bα

a (ϕ → θ), then s |= Bα∧ϕ
a θ. To see this, let w be such that s −→a,Y w. Then

s −→a,X w, and since w |= ϕ, we have w |= θ. For the second half, one checks directly
that Bα∧ϕ

a θ implies s |= Bα
a (ϕ→ θ).

Incidentally, the axioms of the logic have interpretations in terms of belief re-

4This is denoted in [Stalnaker, 1968] by �ϕ. Note that it corresponds in our notation to Kϕ,
and should not be confused with our notation for “safe belief” �ϕ in the next subsection.
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vision, as we shall see. In particular, the last axiom (“minimality of revision”)
corresponds to the conjunction of the AGM principles of Subexpansion and Su-
perexpansion (principles (7) and (8) in Section 7).

Adding common knowledge and belief It is also possible to expand the
language with operators CbαB and CbαB, reflecting conditional versions of common
belief and knowledge in a group B. For the proof systems and more on these
systems, cf. Board [2004], and Baltag and Smets [2006a; 2006b; 2006c]. Board’s
paper also contains interesting variations on the semantics, and additional axioms.
Baltag and Smets offer a generalization of the notion of a plausibility model to that
of a conditional doxastic model. Both authors considers applications to modeling
in games.

Belief revision structures The plausibility models that we have been con-
cerned with in this section may be generalized in a number of ways. First of all,
the pre-wellorders for each agent might be world-dependent. This would be impor-
tant to model agents with incorrect beliefs about their own beliefs, for example.

In this way, we arrive at what Board [2004] calls belief revision structures. For
more on this logic, including completeness results, see Board [2004].

4.8 The logic of knowledge and safe belief

As we saw, Stalnaker’s defeasibility analysis of knowledge asks a weaker require-
ment than the one satisfied by our notion of “absolutely unrevisable knowledge”:
namely, it states that ϕ is known (in the weak, defeasible sense) if there exists no
true piece of information X such that the agent would no longer be justified to
believe ϕ after learning X . Following Baltag and Smets [2006b; 2006c], we call
safe belief this weak notion of defeasible “knowledge”, and we use the notation
�aϕ to express the fact that a safely believes ϕ. We can immediately formalize
this notion in terms of conditional belief arrows:

s |= �aϕ iff for all t ∈ S, and all s ∈ X ⊆ S : s −→a,X t implies t |= ϕ.

To our knowledge, the first formalization of safe belief (under the name of “knowl-
edge”) was due to Stalnaker [1996], and used the above clause as a definition.
Observe that it uses quantification over propositions (sets of states). It was
only recently observed, in [Baltag and Smets, 2006b; Baltag and Smets, 2006c;
Stalnaker, 2006], that this second-order definition is equivalent to a simpler one,
which takes safe belief as the Kripke modality associated to the relation “at most
as plausible as”:

[[�aϕ]] = {s ∈ S : t ∈ [[ϕ]], for all t ≤a s} (17)

This last condition was adopted by Baltag and Smets [2007b] as the definition of
safe belief. The same notion was earlier defined, in this last form, by van Benthem
and Liu [2004], under the name of “preference modality”.
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EXAMPLE 8. The situation described in Section 2.4 provides us with examples
of safe and unsafe beliefs. In the model 10, Amina believes (though she doesn’t
know) that Bao doesn’t know that the face of the coin is tails. If the real state is
v, then this belief is true, and moreover it is safe: this is easy to see, since it is true
at both v and w, which are the only two states that are at least as plausible for
Amina as v. This gives us an example of a safe belief which is not knowledge. If
instead the real state is u, then the above belief is still true (though is not known).
But it is not safe anymore: formally, this is because at state x (which for Amina
is at least as plausible as u), Bao does know the face is tails. To witness this
unsafety, consider the sentence α := BbH ∨BbT, saying that Bao knows the face
of the coin. At the real world u, the sentence α is true; but, at the same world u,
Amina does not believe that, if α were true then Bao wouldn’t know that the face
was tails: u |= α ∧ ¬Bα

a¬BbT. This shows that Amina’s belief, though true, can
be defeated at state u by learning the true sentence α.

Stalnaker [2006] observes that belief can be defined in terms of safe belief, via
the logical equivalence: Baϕ ↔ ¬�a¬�aϕ, and that the complete logic of the
safe belief modality �a is the modal logic S4.3.5 Baltag and Smets [2006b; 2006c]
observe that by combining safe belief �aϕ with the “absolute” notion of knowledge
Kaϕ introduced in the previous section, one can define conditional belief via the
equivalence6:

Bα
aϕ ↔ (¬Ka¬α→ ¬Ka¬(α ∧�a(α→ ϕ))).

The logic of knowledge and safe belief is then axiomatized by the S5 system
for knowledge, the S4 system for safe belief, and two connection properties: First,
Ka → �aϕ. This reiterates the earlier observation: knowledge (in our absolute
sense) is a strengthening of safe belief. The second axiom says that the plausibility
relation ≤a is connected within each ∼a -equivalence class:

Ka(ϕ ∨�aψ) ∧Ka(ψ ∨�aϕ) → Kaϕ ∨Kaψ.

Belief and conditional belief are derived notions in this logic, defined via the above
logical equivalences.

4.9 Propositional Dynamic Logic

This section of our chapter mainly consists of brief presentations of logical systems
which are intended to model notions of importance for epistemic or doxastic logic.
The current subsection is an exception: propositional dynamic logic (PDL) is
a system whose original motivations and main uses come from a different area,
semantics studies programming languages. We are not concerned with this here,

5S4.3 is the logic of reflexive transitive frames with no branching to the right.
6Van Benthem and Liu [2004] use another logical equivalence to similarly define conditional

belief.
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Syntax
Sentences ϕ
Programs π

pi ¬ϕ ϕ ∧ ψ [π]ϕ
a ?ϕ π;σ π ∪ σ π∗

Semantics Main Clauses [[[π]ϕ]] = {s : if s[[π]]t, then t ∈ [[ϕ]]}
[[?ϕ]] = {(s, s) : s ∈ [[ϕ]]}
[[π;σ]] = [[π]] ; [[σ]]
[[π ∪ σ]] = [[π]] ∪ [[σ]]
[[π∗]] = ([[π]])∗

Figure 6. The language of Propositional Dynamic Logic (PDL)

and we are presenting PDL in a minimum of detail, so that the reader who has
not seen it will be able to see what it is, and how it is used in systems which we
shall see later in the chapter.

The syntax of PDL begins with atomic sentences p, q, . . ., (also called atomic
propositions), and also atomic programs a, b, . . . (sometimes called actions). From
these atomic sentences and programs, we build a language with two types of syn-
tactic objects, called sentences and programs. The syntax is set out in Figure 6.
The sentence-building operations include those of standard logical systems. In
addition, if ϕ is a sentence and π a program, then [π]ϕ is again a sentence. The
intended meaning is “no matter how we run π, after we do so, ϕ holds.” This
formulation hints that programs are going to be non-deterministic, and so one of
the syntactic formation rules does allow us to take the union (or non-deterministic
choice) of π and σ to form π ∪ σ. The other formation rules include composition
(;), testing whether a sentence is true or not (?ϕ), and iteration (π∗).

The basic idea in the semantics is that we have state set S to start, and pro-
grams are interpreted in the most extensional way possible, as relations over S.
So we are identifying the program with its input-output behavior; since we are
thinking of non-deterministic programs, this behavior is a relation rather than a
function. Atomic programs are interpreted as relations which are given as part
of a model, and the rest of the programs and sentences are interpreted by a si-
multaneous inductive definition given in Figure 6. With this interpretation, each
program π turns into a sentence-forming operation [π]; these then behave exactly
as in standard relational modal systems. The clause for program composition
uses composition of relations, and the one for iteration uses the reflexive-transitive
closure operation.

PDL turns out to be decidable and to have a nice axiom system. The system
resembles modal logic, and indeed one takes the basic axioms and rules for the
operators [π] given by programs. The other main axioms and rules are

(Test) � [?ϕ]ψ ↔ (ϕ→ ψ)
(Composition) � [π;σ]ϕ↔ [π][σ]ϕ
(Choice) � [π ∪ σ]ϕ↔ ([π]ϕ ∧ [σ]ϕ)
(Mix) � [π∗]ϕ→ ϕ ∧ [π][π∗]ϕ
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One also has an Induction Rule: From χ → ψ χ → [π]χ, infer χ → [π∗]ψ.
The treatment of iteration is related to what we saw for common knowledge in
Section 4.5; there is a common set of mathematical principles at work. For more
on PDL, see, e.g., Harel, Kozen, and Tiuryn [2000].

PDL and epistemic updates One important observation that links PDL with
epistemic logic is that the changes in agents’ accessibility relations as a result of
an epistemic action of some sort or other are often given as relation-changing
programs. We want to spell this out in detail, because it will be important in
Section 7.2.

The semantics of a PDL sentence ϕ in a given model M may be taken to be a
subset [[ϕ]] ⊆M , namely the set of worlds making ϕ true. Similarly, the semantics
of a PDL program π may be taken to be a relation [[π]] on M . Now given a
PDL program π(r) with a relation variable r, we can interpret π(r) by a function
[[π(r)]] from relations on M to relations on M (a relation transformer): for each
R ⊆ M ×M , we use R for the semantics of r and the rest of the semantics as
above.

We shall see a simple example of this shortly, in Example 10 of Section 5.1.

5 DYNAMIC EPISTEMIC LOGIC

We now move on to a different form of dynamics related to the topic of our
chapter. Starting from the perspective of epistemic logic, knowledge and belief
change can also be modeled by expanding the logic with dynamic modal operators
to express such changes. The result is known as Dynamic Epistemic Logic(s), or
DEL for short. The first and the simplest form of dynamics is that associated
with public announcements. It is simple from the perspective of change, but not
particularly simple seen as an extension of epistemic logic. Public announcement
logic is discussed in Section 5.1, and some related technical results of philosophical
interest are presented in Section 5.2. Next, we move on to various forms of private
announcements and to the associated dynamic logics, presented in Section 5.3.
Even more complex types of dynamics, induced by various types of epistemic
actions, are treated in Section 5.4. Finally, in Section 5.5 we briefly introduce
logical languages and axioms for epistemic actions.

5.1 Public announcements

We first saw public announcements in Section 2.1. The example there was very
simple indeed, and so to illustrate the phenomenon further, it will be useful to
have a more complicated scenario. This discussion in this section is based on
Example 2 in Section 4.4. Assume for the moment that the card deal is described
by ♣♥♠: Amina holds clubs, Bao hearts, and Chandra spades. Amina now says
(‘announces’) that she does not have the hearts card. Therefore she makes public
to all three players that all deals where Heartsa is true can be eliminated from
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Figure 7. In the epistemic state (Hexa,♣♥♠) Amina announces that she does not
have hearts.

consideration: everybody knows that everybody else eliminates those deals, etc.
They can therefore be publicly eliminated. This results in a restriction of the model
Hexa as depicted in Figure 7.

At this point, we only consider announcements like this in states where the
announcement is true. We view the public announcement “I do not have hearts” as
an ‘epistemic program’. We interpret it as an state transformer just as flipping the
box was so interpreted in Section 4.2. This program is interpreted as an ‘epistemic
state transformer’ of the original epistemic state, exactly as we saw in Section 4.9
for PDL. We want [!ϕ]ψ to mean that after (every) truthful announcement of ϕ,
the sentence ψ holds. Continuing to borrow terminology from dynamic logic, state
transformers come with preconditions. In this case, we want the precondition to
be ¬Heartsa, so that we set aside the matter of false announcements.

The effect of such a public announcement of ϕ is the restriction of the epistemic
state to all worlds where ϕ holds. So, ‘announce ϕ’ can indeed be seen as an
epistemic state transformer, with a corresponding dynamic modal operator [!ϕ].

We appear to be moving away slightly from the standard paradigm of modal
logic. So far, the accessibility relations were between states in a given model
underlying an epistemic state. But all of a sudden, we are confronted with an ac-
cessibility relation between epistemic states as well. “I do not have hearts” induces
a(n) (epistemic) state transition such that the pair of epistemic states in Figure
7 is in that relation. The epistemic states take the role of the points or worlds
in a seemingly underspecified domain of ‘all possible epistemic states’. By lifting
accessibility between points in the original epistemic state to accessibility between
epistemic states, we can get the dynamic and epistemic accessibility relations ‘on
the same level’ again, and see this as an ‘ordinary structure’ on which to interpret
a perfectly ordinary multimodal logic. (There is also a clear relation here with
interpreted systems, which will be discussed in Subsection 6.3, later.) A crucial
point is that this ‘higher-order structure’ is induced by the initial epistemic state
and the actions that can be executed there, and not the other way round. So it is
standard modal logic after all.
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Amina’s announcement “I do not have hearts” is a simple epistemic action in
various respects. It is public. A ‘private’ event would be when she learns that
Bao has hearts without Bao or Chandra noticing anything. This required a more
complex action description. It is truthful. She could also have said “I do not
have clubs.” She would then be lying, but, e.g., may have reason to expect that
Bao and Chandra believe her. This would also require a more complex action
description. It is deterministic. In other words, it is a state transformer. A
non-deterministic action would be that Amina whispers into Bao’s ear a card she
does not hold, on Bao’s request for that information. This action would have
two different executions: “I do not have hearts”, and “I do not have spades.”
Such more complex actions can be modeled in the action model logic presented in
Section 5.4.

Language and semantics Add an inductive clause [!ϕ]ψ to the definition of
the language. For the semantics, add the clause:

M, s |= [!ϕ]ψ iff M, s′ |= ϕ implies M |ϕ, s |= ψ

where M |ϕ = 〈S′, R′, V ′〉 is defined as

S′ ≡ {s′ ∈ S | M, s′ |= ϕ}
R′

a ≡ {(s′, t′) ∈ S′ × S′ : (s, t) ∈ Ra}
V ′

p ≡ {s′ ∈ S′ : s ∈ Vp}

In other words: the model M |ϕ is the model M restricted to all the states where
ϕ holds, including access between states (a submodel restriction in the standard
meaning of that term). It might be useful to look back at Section 2.1 for a
discussion of the parallel case of probabilistic conditioning.

The language described above is called the language of public announcement,
or public announcement logic (PAL).

EXAMPLE 9. After Amina’s announcement that she does not have hearts, Chan-
dra knows that Amina has clubs (see Figure 7). We can verify this with a semantic
computation as follows: In order to check that Hexa,♣♥♠ |= [!¬Heartsa]KcClubsa,
we have to show that Hexa,♣♥♠ |= ¬Heartsa implies Hexa|¬Heartsa,♣♥♠ |=
KcClubsa. The antecedent of this conditional being true, it remains to show that
Hexa|¬Heartsa,♣♥♠ |= KcClubsa. The state Hexa|¬Heartsa,♣♥♠ is shown in Fig-
ure 7. Clearly, at the world ♣♥♠ in it, KcClubsa.

EXAMPLE 10. We mentioned at the end of Section 4.9 that program terms in
PDL with variables may be used to specify the actions of epistemic actions. Here
is how this works for public announcement of a sentence ϕ. For each agent a, the
program π(r) we want is ?ϕ; r; ?ϕ. As previously explained, this defines a relation
transformer [[π(r)]] on the underlying model. Then if Ra is agent a’s accessibility
relation before the announcement, [[π(r)]](Ra) is her accessibility relation after-
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wards. In more detail,

[[?ϕ; r; ?ϕ]](Ra) = {(w,w) : w ∈ [[ϕ]]}; {(u, v) : uRa, v}; {(w,w) : w ∈ [[ϕ]]}
= {(u, v) : u, v ∈ [[ϕ]] and uRa, v}

The dual operators 〈!ϕ〉 Most people prefer to consider the dual 〈!ϕ〉 of [!ϕ].
That is, we take 〈!ϕ〉ψ to an abbreviation for ¬[! ϕ]¬ψ. This is equivalent to saying
that M, s |= 〈!ϕ〉ψ if and only if M, s |= ϕ and M |ϕ, s |= ψ.

The point is that statements of the form [!ϕ]ψ are conditionals and therefore
are taken to be true when their antecedents are false; the duals are conjunctions.
To see the difference, 〈!¬Heartsa〉KcClubsa is false at (Hexa,♣♥♠).

Announcement and knowledge In general, [!ϕ]Kaψ is not equivalent toKa[!ϕ]ψ.
The easiest way to see this in our running example is to note that

Hexa,♣♥♠ 	|= Kc[!Heartsa]Clubsa.

The correct equivalence in general requires that we make the truth of [!ϕ]Kaψ
conditional on the truth of the announcement. So we get the following:

[!ϕ]Kaψ is equivalent to ϕ→ Ka[!ϕ]ψ.

Announcement and common knowledge Incidentally, the principle describ-
ing the interaction between common knowledge and announcement is rather in-
volved. It turns out to be an inference rule rather than an axiom scheme. (One
may compare it to the Induction Rule of PDL which we saw in Section 4.9; the
rule here generalizes that one.) We therefore turn next to the proof system for
validity in this logic.

A logical system See Figure 8 for a a proof system for this logic, essentially
taken from [Baltag et al., 1998]. It has precursors (namely completeness results
for the logic with announcements but without common knowledge) in [Plaza, 1989]
and [Gerbrandy and Groeneveld, 1997]; technically, this works out easier because
the rules of the logic allow one to rewrite all sentences in a way that eliminates
announcements altogether, and in this situation we may appeal to the known
completeness result for epistemic logic. Thus the main point in the axiomatic work
of [Baltag et al., 1998] was the formulation of the Announcement Rule relating
announcements and common knowledge, and the resulting completeness theorem.

Announcements are functional If an announcement can be executed, there
is only one way to do it. So the partial functionality axiom in Figure 8 is sound.
It is also convenient to write this as

〈!ϕ〉ψ → [!ϕ]ψ.
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[!ϕ]p↔ (ϕ→ p) atomic permanence
[!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ) partial functionality
[!ϕ]Kaψ ↔ (ϕ→ Ka[!ϕ]ψ) announcement-knowledge

From χ→ [!ϕ]ψ and χ ∧ ϕ→ Kaχ for all a ∈ B, infer χ→ [!ϕ]CBψ
(the Announcement Rule)

Figure 8. The main points of the logic of public announcements. We have omitted
the usual modal apparatus for modalities [!ϕ].

This is a simple consequence of the functionality of the state transition semantics
for announcement. One might also say (from a programming perspective) that
announcements are deterministic.

Sequence of announcements A sequence of two announcements can always
be replaced by a single, more complex announcement. Instead of first saying ‘ϕ’
and then saying ‘ψ’ you may as well have said for the first time ‘ϕ, and after saying
that ψ’. This is expressed in

[!〈!ϕ〉ψ]χ↔ [!ϕ][!ψ]χ.

This is useful when analyzing announcements that are made with specific inten-
tions; or, more generally, conversational implicatures à la Grice. Intentions can
be postconditions ψ that should hold after the announcement. So the (truthful)
announcement of ϕ with the intention of achieving ψ corresponds to the announce-
ment 〈!ϕ〉ψ.

If a sentence is common knowledge to all agents, there is no point in
announcing it It will not change anyone’s knowledge state:

CAϕ→ (Kaψ ↔ [!ϕ]Kaψ).

Here A is our set of all agents.

What can be achieved by public announcements? An interesting ques-
tion, related to van Benthem’s [2004] discussion of Fitch’s paradox presented in
Section 3.6, is to characterize the sentences that can come to be true through some
(sequence of) public announcement(s), at a given state (in a given model). One
answer is offered by the “ability” modality ♦ϕ, informally introduced in Section
3.6. Now we can formally define the semantics of ♦ϕ, by saying it is true at a state
iff there exists some epistemic sentence ψ such that 〈!ψ〉ϕ is true at that state. So
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the “ability” modality can be obtained by quantifying over public announcements
(for all epistemic sentences). The above observation on the fact that a sequence of
public announcements can be simulated by a single announcement shows that we
do not have to iterate the defining clause of ♦ϕ: it already captures what can be
achieved by any iteration. It also means that this modality satisfies the axioms of
the system S4. Balbiani et al [2007] call ♦ϕ the “arbitrary announcement” modal-
ity, and give a complete axiomatization of the logic of arbitrary announcements,
as well as studying its expressivity.

Alternative semantics There are some alternative semantics for public an-
nouncements. Gerbrandy [1999; 2007] and Kooi [2007] propose a different se-
mantics for announcements in a setting possibly more suitable for ‘belief’. The
execution of such announcements is not conditional to the truth of the announced
formula.

Yet another semantics has recently been proposed by Steiner [2006], to solve the
problem of inconsistent beliefs that may be induced by public announcements. The
semantics presented in this section has the disadvantage that updates induced by
announcements do not necessarily preserve the seriality property (axiom D above):
agents who have wrong (but consistent) beliefs may acquire inconsistent beliefs
after a truthful public announcement. Steiner’s alternative semantics solves this
by proposing a modified semantics in which the new information is rejected if not
consistent with prior beliefs. Yet another possible solution would be to incorporate
some mechanism for belief revision, along the lines we discuss in Section 7.

Relativized common knowledge Recent developments in the area use a dif-
ferent modal notion, ‘relativized common knowledge’, of which standard common
knowledge can be seen as a special case [van Benthem et al., 2006b; Kooi, 2007].
Here is the idea. Add to the syntax an operation CB(ϕ, ψ). The semantics is

w |= CB(ϕ, ψ) iff every path from w using
⋃

a∈B →a
consisting entirely of worlds where ϕ holds
ends in a world where ψ holds

This results in more a expressive logic. At the same time, the relation between
announcements and relativized common knowledge turns into an axiom:

(EB(ϕ→ ψ) → CB(ϕ, ψ → EB(ϕ→ ψ))) → CB(ϕ, ψ).

van Benthem, van Eijck and Kooi [2006b] contains the completeness proofs for
this logic and others, and also various expressivity results.

Iteration The language of PDL has an iteration operator on actions, but this
has not been reflected in any of our example scenarios. However, there are scenarios
and protocols whose natural description uses action iteration. One example is the
general form of the Muddy Children-type scenario, as we described it in Section 3.1.
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vision
∧

a∈A

∧
b�=a((db → Kadb) ∧ (¬db → Ka¬db))

at least one
∨

a∈A da

background CA(vision ∧ at least one)
nobody knows

∧
a∈A(¬Kada ∧ ¬Ka¬da)

somebody knows ¬nobody knows

Figure 9. Abbreviations in the discussion of the Muddy Children scenario, follow-
ing [Gerbrandy and Groeneveld, 1997].

We discuss this in connection with the sentences in Figure 9. These are based on
sentences in Gerbrandy and Groeneveld [1997]. In them, da is an atomic sentence
asserting that child a is dirty, and similarly for the other children. Informally, the
sentence vision says that every child a can see and therefore knows the status of
all other children. Note that vision is a (finite) sentence since the set A of agents
(the children here) is finite. background says that it is common knowledge that
vision and at least one hold. The intuition is that this is the background that
the children have after the adult’s announcement that at least one of them is dirty.

The sentence background is much weaker than what one would usually take to
be the formalization of the overall background assumptions in the Muddy Children
scenario. However, it is enough for the following result:

ϕA ≡ background → 〈nobody knows∗〉somebody knows. (18)

Note the ∗ in (18). The formal semantics would make this equivalent to the
infinitary sentence

background →
∨
n

〈nobody knowsn〉somebody knows.

Either way, ϕA says that given the background assumption, some finite number
of public announcements of everyone’s ignorance will eventually result in the op-
posite: someone knowing their status.

PROPOSITION 11. For each finite set A of children, |= ϕA.

For a proof, see Miller and Moss [2005]. The point of Proposition 11 is that
the statements ϕA are natural logical validities. So it makes sense to ask for a
logical system in which such validities coincide with the provable sentences. The
basic logic of announcements and common knowledge is known to be decidable,
and indeed we have seen the axiomatization in Figure 8. However, it was shown
in [Miller and Moss, 2005] that adding the iterated announcement construct that
gives us the 〈nobody knows∗〉 operation results in logical systems whose satisfi-
able sentences are not decidable. The upshot is that (unfortunately) there is no
hope of a finitely axiomatized logical system for the validities in a language which
includes sentences like (18).
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Notes The logic of multi-agent epistemic logic with public announcements and
without common knowledge has been formulated and axiomatized by Plaza [1989].
For the somewhat more general case of introspective agents, this was done by
Gerbrandy and Groeneveld [1997]; they were not aware of Plaza’s work at the
time. In [Plaza, 1989], public announcement is seen as a binary operation +,
such that ϕ + ψ is equivalent to 〈!ϕ〉ψ. The logic of public announcements with
common knowledge was axiomatized by Baltag, Moss, and Solecki [1998], see also
[Baltag et al., 1999; Baltag, 2002; Baltag and Moss, 2004], in a more general setting
that will be discussed in Section 5.4: the completeness of their proof system is a
special case of the completeness of their more general logic of action models. A
concise introduction into public announcement logic (and also some of the more
complex logics presented later) is found in [van Ditmarsch et al., 2005]. A textbook
presentation of the logic is [van Ditmarsch et al., 2007]. This also contains a more
succinct completeness proof than found in the original references. Results on
complexity of the logic are presented by Lutz in [2006].

There are a fair number of precursors of these results. One prior line of research
is in dynamic modal approaches to semantics, not necessarily also epistemic: ‘up-
date semantics’. Another prior line of research is in meta-level descriptions of epis-
temic change, not necessarily on the object level as in dynamic modal approaches.
This relates to the temporal epistemics and interpreted systems approach for which
we therefore refer to the summary discussion in the previous section.

The ‘dynamic semantics’ or ‘update semantics’ was followed in van Emde Boas,
Groenendijk, and Stokhof [1984], Landman [1986], Groeneveld [1995], and Velt-
man [1996]. However, there are important philosophical and technical differences
between dynamic semantics and dynamic epistemic logic as we present it here.
The main one is that update semantics interprets meaning (in natural language)
as a relation between states, and so it departs from standard accounts. Never-
theless, the “dynamic” feature is common to both. Work taking propositional
dynamic logic (PDL) in the direction of natural language semantics and related
areas was initiated by van Benthem [1989] and followed up in de Rijke [1994] and
Jaspars [1994]. As background literature to various dynamic features introduced
in the 1980s and 1990s we recommend van Benthem [1989; 1996; 1994]. More
motivated by runs in interpreted systems is van Linder, van der Hoek, and Meyer
[1995]. All these approaches use dynamic modal operators for information change,
but (1) typically not (except [van Linder et al., 1995]) in a multi-modal language
that also has epistemic operators, (2) typically not for more than one agent, and
(3) not necessarily such that the effects of announcements or updates are defined
given the update formula and the current information state: the PDL-related and
interpreted system related approaches presuppose a transition relation between
information states, such as for atomic actions in PDL. We outline, somewhat ar-
bitrarily, some features of these approaches. Groeneveld’s approach [Groeneveld,
1995] is typical for dynamic semantics in that is has formulas [!ϕ]aψ to express
that after an update of agent a’s information with ϕ, ψ is true. His work was
later merged with that of Gerbrandy, resulting in the seminal [Gerbrandy and
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Groeneveld, 1997]. Gerbrandy’s semantics of public announcements is given in
[Gerbrandy, 1999], in terms of the universe VAFA of non-wellfounded sets: this is
a kind of “universal Kripke model”; i.e., a class in which every Kripke model can
be embedded in a unique manner (up to bisimilarity; see the end of Section 4.4).
In this way, one can avoid changing the initial model (by eliminating states and
arrows) after a public announcement: instead, one just moves to another state in
the same huge, all-encompassing Kripke super-model VAFA. It was later observed
in [Moss, 1999] that one can do with ordinary models.

De Rijke [1994] defines theory change operators [+ϕ] and [∗ϕ] with a dynamic
interpretation that link an enriched dynamic modal language to AGM-type the-
ory revision [Alchourrón et al., 1985] (see also Section 7 addressing dynamic epis-
temics for belief revision). In functionality, it is not dissimilar to Jaspars’ [1994]
ϕ-addition (i.e., expansion) operators [!ϕ]u and ϕ-retraction (i.e., contraction) op-
erators [!ϕ]d, called updates and downdates by Jaspars. Van Linder, van der Hoek,
and Meyer [1995] use a setting that combines dynamic effects with knowledge and
belief, but to interpret various action operators they assume an explicit transition
relation as part of the Kripke structure interpreting such descriptions.

As somewhat parallel developments to [Gerbrandy, 1999], we also mention Lo-
muscio and Ryan [1999]. They do not define dynamic modal operators in the
language, but they define epistemic state transformers that clearly correspond to
the interpretation of such operators: M ∗ ϕ is the result of refining epistemic
model M with a formula ϕ, etc. Their semantics for updates is only an approx-
imation of public announcement logic, as the operation is only defined for finite
(approximations of) models.

5.2 Sentences true after being announced

Moore sentences, revisited Recall that Moore sentences are strongly unsuc-
cessful: they are always false after being announced. In terms of our public an-
nouncement logic, we can define strongly unsuccessful formulas ϕ as the ones such
that the formula [!ϕ]¬ϕ is valid. An interesting open problem is to give a syntactic
characterization of strongly unsuccessful sentences.

Successful formulas A more interesting and natural question is to characterize
syntactically the successful formulas: those ϕ such that [!ϕ]ϕ is valid. That is,
whenever ϕ holds and is announced, then ϕ holds after the announcement. In
our setting, it is easy to see that a successful formula has also the property that
[!ϕ]CAϕ is valid.

For example, the atomic sentences p are successful, as are their boolean combina-
tions and also the sentences Kp. Logically inconsistent formulas are also trivially
successful: they can never be truthfully announced, so after their truthful an-
nouncement everything is true (including themselves). Public knowledge formulas
are also successful: [!CAϕ]CAϕ is valid. This follows from bisimulation invariance
under point-generated submodel constructions. On the negative side, even when
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both ϕ and ψ are successful, ¬ϕ may be unsuccessful (for ϕ = ¬p ∨ Kp), ϕ ∧ ψ
may be unsuccessful (for ϕ = p and ψ = ¬Kp), and as well [!ϕ]ψ and ϕ→ ψ may
be unsuccessful.

In its general form, the question of syntactically characterizing successful sen-
tences remains open. But we present now two results on this problem.

Preserved formulas One successful fragment form the preserved formulas (in-
troduced for the language without announcements by van Benthem in [2002]) that
are inductively defined as

ϕ ::= p | ¬p | ϕ ∧ ψ | ϕ ∨ ψ | Kaϕ | CBϕ | [!¬ϕ]ψ

(where B ⊆ A). From ϕ→ [!ψ]ϕ for arbitrary ψ, follows ϕ→ [!ϕ]ϕ which is equiv-
alent to [!ϕ]ϕ; therefore preserved formulas are successful formulas. The inductive
case [!¬ϕ]ψ in the ‘preserved formulas’ may possibly puzzle the reader. Its proof
[van Ditmarsch and Kooi, 2006] is quite elementary (and proceeds by induction
on formula structure) and shows that the puzzling negation in the announcement
clause is directly related to the truth of the announcement as a condition:

Let M, s |= [!¬ϕ]ψ, and M ′ ⊆M such that s ∈M ′. Assume M ′, s |= ¬ϕ. Then
M, s |= ¬ϕ by contraposition of the inductive hypothesis for ϕ. From that and
M, s |= [!¬ϕ]ψ follows M |¬ϕ, s |= ψ. From the inductive hypothesis for ψ follows
M ′|¬ϕ, s |= ψ. Therefore M ′, s |= [!¬ϕ]ψ by definition.

Universal formulas A different guess would be that ϕ is successful iff ϕ is
equivalent to a sentence in the universal fragment of modal logic, the fragment
built from atomic sentences and their negations using K, ∧, and ∨. However,
this is not to be. We discuss work on single agent models whose accessibility
relation is an equivalence relation in this discussion. It remains open to weaken
this assumption and obtain similar results.

Suppose that ϕ and ψ are non-modal sentences (that is, boolean combinations
of atomic sentences). Suppose that |= ψ → ϕ. Consider ϕ∨ K̂ψ. (Again, K̂ is the
dual of K, the “possibility” operator.) This is clearly not in general equivalent to
a sentence in our fragment. Yet we claim that

|= [!(ϕ ∨ K̂ψ)](ϕ ∨ K̂ψ).

To see this, fix a state model M and some state s in it. If s ∈ [[ϕ]] in M , then since
ϕ is non-modal, s “survives the announcement” and satisfies ϕ ∨ K̂ψ in the new
model. On the other hand, suppose that s ∈ [[K̂ψ]] in M . Let s → t with t ∈ [[ψ]]
in M . Then again, t survives and satisfies ψ and even ϕ ∨ K̂ψ. Hence, s satisfies
ϕ ∨ K̂ψ in the new model.

This example is due to Lei Qian. He also found a hypothesis under which the
“first guess” above indeed holds. Here is his result. Let T0 be the set of non-modal
sentences. Let

T1 = T0 ∪ {Kϕ : ϕ ∈ T0} ∪ {K̂ϕ : ϕ ∈ T0}.
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Finally, let T2 be the closure of T1 under ∧ and ∨.

THEOREM 12 (Qian [2002]). Let ϕ ∈ T2 have the property that |= [!ϕ]ϕ. Then
there is some ψ in the universal fragment of modal logic such that |= ϕ↔ ψ.

5.3 Varieties of privacy

As a warm up before meeting the general notion of “epistemic actions” in the next
section, we present here two generalizations of public announcements: the first,
called fully private announcements, is essentially due (modulo minor differences7)
to Gerbrandy [1997; 1999], while the second, which we call fair-game announce-
ments, is due to van Ditmarsch [2000; 2002]. Both can be regarded as forms of
private announcements: some information is broadcast to an agent, or a group of
agents, while being withheld from the outsiders. But there are important differ-
ences: a fully private announcement is so secret that the outsiders do not even
suspect it is happening; while a fair-game announcement is known by outsiders to
be possible, among other possible announcements.

Fully Private Announcements to Subgroups For each subgroupB of agents,
!Bϕ is the action of secretely broadcasting ϕ to all the agents in the group B, in a
way that is completely oblivious to all outsiders a 	∈ B: they do not even suspect
the announcement is taking place. An example of fully private announcement was
encountered in Section 2.3: Bao is informed that the coin lies Heads up, but in
such a way that Amina does not suspect that this is happening. The announce-
ment is truthful (as in the previous section) but completely private: after that,
Amina still believes that Bao doesn’t know the state of the coin.

Assuming that before Bao entered, it was common knowledge that nobody knew
that state of the coin, the belief/knowledge model before the announcement is a
multi-agent version of the model

�

�

�

�Ha,b ��
�� a,b ��

�

�

�

�T a,b�� (19)

The situation after the fully private announcement (by which Bao is secretely
informed that the coin lies Heads up) is given by the model (6) from Section 2.3.
To recall, this was:
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���
��

��
��

�

�

�

�Ha,b ��
��

a,b
��
�

�

�

�T a,b��

(20)

7As for public announcements, Gerbrandy’s private announcements are not necessarily truth-
ful. We present here a slightly modified version, that assumes truthfulness, in order to be able
to subsume public announcements (as presented in Section 5.1) as a special case.
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We can see that unlike the case of public announcements, the number of states
increases after a fully private announcement. In fact, one can think of the model
in the above picture as being obtained by putting together the initial model (19)
and the model obtained from it by doing a public announcement, with the outsider
(Amina) having doxastic arrows between the two submodels. In other words, the
state transformer for a fully private announcement combines features of the original
model with the one given by the state transformer for a public announcement.

Language and semantics Add an inductive clause [!Bϕ]ψ to the definition of
the language. For the semantics, add the clause:

M, s |= [!Bϕ]ψ iff M, s |= ϕ implies M !Bϕ, s′ |= ψ

where M !Bϕ = 〈S′ ∪ S,R′, V ′〉 is defined as

S′ ≡ {s′ ∈ S | M, s′ |= ϕ}
R′

a ≡ Ra ∪ {(s′, t′) ∈ S′ × S′ : (s, t) ∈ Ra}
V ′

p ≡ V (p) ∪ {s′ ∈ S′ : s ∈ V (p)}

The language described above is called the logic of fully private announcements
to subgroups. The axioms and rules are just as in the logic of public announce-
ments, with a few changes. We must of course consider the relativized operators
[!Bϕ] instead of their simpler counterparts [!ϕ]. The most substantive change which
we need to make in Figure 8 concerns the Action-Knowledge Axiom. It splits into
two axioms, noted below:

[!Bϕ]Kaψ ↔ (ϕ→ Ka[!Bϕ]ψ) for a ∈ B
[!Bϕ]Kaψ ↔ (ϕ→ Kaψ) for a /∈ B

The last equivalence says: assuming that ϕ is true, then after a private announce-
ment of ϕ to the members of B, an outsider knows ψ just in case she knew ψ
before the announcement.

Fair-game Announcements In a fair-game announcement, some information
is privately learned by an agent or a group of agents, but the outsiders are aware
of this possibility: it is publicly known that the announcement is one of a given
list of possible alternatives, although only the insiders will known which one.

We illustrate fair-game announcements with two examples. Let us reconsider
the epistemic state (Hexa,♣♥♠) wherein Amina holds clubs, Bao holds hearts, and
Chandra holds spades. It is shown in Figure 4. Consider the following scenario:

Amina shows (only) Bao her clubs card. Chandra cannot see the face
of the shown card, but notices that a card is being shown.
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Figure 10. On the left, the Kripke model for three players each holding one card.
On the right, the effect of Amina showing her clubs card to Bao.

It is assumed that it is publicly known what the players can and cannot see or
hear. Call the action we are discussing showclubs. The epistemic state transition
induced by this action is depicted in Figure 10. Unlike after public announce-
ments, in the showclubs action we cannot eliminate any state. Instead, all b-links
between states have now been severed: whatever was the actual deal of cards,
Bao now knows that card deal and cannot imagine any alternatives. We hope to
demonstrate the intuitive acceptability of the resulting epistemic state. After the
action showclubs, Amina considers it possible that Chandra considers it possible
that Amina has clubs. That much is obvious, as Amina has clubs anyway. But
Amina also considers it possible that Chandra considers it possible that Amina
has hearts, because Amina considers it possible that Chandra has spades, and so
does not know whether Amina has shown clubs or hearts. It is even the case that
Amina considers it possible that Chandra considers it possible that Amina has
spades, because Amina considers it possible that Chandra does not have spades
but hearts, in which case Chandra would not have known whether Amina has
shown clubs or spades. And in all those cases where Amina shows her card, Bao
obviously would have learned the deal of cards. Note that, even though for Chan-
dra there are only two possible actions—showing clubs or showing hearts—none
of the three possible actions can be eliminated from public consideration.

But it can become even more complex. Imagine the following action, rather
similar to the showclubs action:

Amina whispers into Bao’s ear that she does not have the spades card,
given a (public) request from Bao to whisper into his ear one of the
cards that she does not have.

This is the action whispernospades. Given that Amina has clubs, she could have
whispered “no hearts” or “no spades”. And whatever the actual card deal was,
she could always have chosen between two such options. We obtain a model that
reflects all possible choices, and therefore consists of 6 × 2 = 12 different states.
It is depicted in Figure 11 (wherein we assume transitivity of the accessibility
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Figure 11. After Amina whispered into Bao’s ear that she does not have the
spades card, given a (public) request from Bao to whisper into his ear one of the
cards that she does not have. Assume transitivity of the accessibility relation for
Chandra.

relation for c). There is a method of calculating complex representations like
this one, and we shall discuss this particular model in Example 17 in the next
section. But for now, the reader may look at the model itself to ascertain that the
desirable postconditions of the action whispernospades indeed hold. For example,
given that Bao holds hearts, Bao will now have learned from Amina what Amina’s
card is, and thus the entire deal of cards. So there should be no alternatives for
Bao in the actual state (the underlined state ♣♥♠ ‘at the back’ of the figure—
for convenience, different states for the same card deal have been given the same
name). But Chandra does not know that Bao knows the card deal, as Chandra
considers it possible that Amina actually whispered “no hearts” instead. That
would have been something that Bao already knew, as he holds hearts himself—so
from that action he would not have learned very much. Except that Chandra could
then have imagined him to know the card deal . . . Note that in Figure 11, there is
also another state named ♣♥♠, ‘in the middle’, so to speak, that is accessible for
Chandra from the state ♣♥♠ ‘at the back’, and that witnesses that Bao doesn’t
know that Amina has clubs.

Notes The logic of fully private announcements has been first formulated and
axiomatized by Gerbrandy [Gerbrandy and Groeneveld, 1997; Gerbrandy, 1999],
in a slightly different version: as for public announcements, Gerbrandy’s private
announcements are not necessarily truthful. Also, Gerbrandy’s semantics of fully
private announcements, as the one of public announcements, is given in terms
of non-wellfounded sets, rather than Kripke models. The version presented here
(which assumes truthfulness and uses Kripke semantics) was formulated in Baltag
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and Moss [2004], as a special case of a “logic of epistemic programs”. Gerbrandy
[1999] considers more general actions: fully private announcements are only a
special case of his operation of (private) updating with an epistemic program.

The logic of fair-game announcements is a special case of the work by van
Ditmarsch [2000; 2002] and by Baltag, Moss, and Solecki [1998; 2004]; the latter
call it “the logic of common knowledge of alternatives”.

5.4 Epistemic actions and the product update

As we saw in the previous section, some epistemic actions are more complex than
public announcements, where the effect of the action is always a restriction on the
epistemic model. As in the previous examples, the model may grow in complex
and surprising ways, depending on the specific epistemic features of the action.
Instead of computing by hand the appropriate state transformer for each action,
it would be useful to have a general setting, in which one could input the specific
features of any desired action and compute the corresponding state transformer in
an automatic way.

Action models We present a formal way to model such actions, and a large
class of similar events, via the use of ‘action models’, originating in [Baltag et al.,
1998]. The basic idea is that the agents’ uncertainty about actions can profitably
be modeled by putting them in relation to other possible actions, in a way similar
to how the agents’ uncertainty about states was captured in a Kripke model by
relating them to other possible states. When Amina shows her clubs card to Bao,
this is indistinguishable for Chandra from Amina showing her hearts card to Bao—
if she were to have that card. And, as Amina considers it possible that Chandra
holds hearts instead of spades, Amina also considers it possible that Chandra
interprets her card showing action as yet a third option, namely showing spades.
These three different card showing actions are therefore, from a public perspective,
all indistinguishable for Chandra, but, again from a public perspective, all different
for Amina and Bao.

We can therefore visualize the ‘epistemic action’ of Amina showing clubs to
Bao as some kind of Kripke structure, namely with a domain of three ‘action
points’ standing for ‘showing clubs’, ‘showing hearts’, and ‘showing spades’, and
accessibility relations for the three players corresponding to the observations above.
We now have what is called an action model. What else do we need? To relate
such ‘action models’ to the preconditions for their execution, we associate to each
action point in such a model a formula in a logical language: the precondition of
that action point.

To execute an epistemic action, we compute what is known as the restricted
modal product of the current epistemic state and the epistemic action. The re-
sult is ‘the next epistemic state’. It is a product because the domain of the next
epistemic state is a subset of the cartesian product of the domain of the current
epistemic state and the domain of the action model. It is restricted because we
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restrict that full product to those (state, action) pairs such that the precondition
for the action of the pair is satisfied in the state of the pair. Two states in the new
epistemic state are indistinguishable (accessible), if and only if the states in the
previous epistemic state from which they evolved were already indistinguishable
(accessible), and if the two different actions executed there were also indistinguish-
able. For example, Chandra cannot distinguish the result of Amina showing clubs
in state ♣♥♠ from Amina showing hearts in state ♥♣♠, because in the first place
she could not distinguish those two card deals, and in the second place she cannot
distinguish Amina showing clubs from Amina showing hearts.

REMARK 13. This is perhaps a good point to make a comment on the terminol-
ogy. What we are calling “action models” involve “actions” in an abstract sense,
and so some of the important features of real actions are missing. For example,
there is no notion of agency here: events like public announcement are modeled
without reference to any agent(s) whatsoever as their source. Further, they may
well be complex (many-step) actions, and for this reason they are also called pro-
grams in work such as [Baltag and Moss, 2004]. So other authors have called our
“action models” event models. We maintain the older terminology mainly because
this is how it has appeared in the literature.

We now formally define action models and their execution, for any given logical
language. We leave for later the problem of finding a good such language for
describing epistemic actions and their effects. As usual, we assume background
parameters in the form of a set of agents A and a set of propositional variables P .

DEFINITION 14 (Action model). Let L be a logical language. An action model
over L is a structure U = 〈S,R, pre〉 such that S is a domain of action points, such
that for each a ∈ A, Ra is an accessibility relation on S, and such that pre : S → L
is a precondition function that assigns a precondition pre(α) ∈ L to each α ∈ S.
An epistemic action is a pointed action model (U, α), with α ∈ S.

EXAMPLE 15. The public announcement of ϕ is modeled by a singleton action
model, consisting of only one action point, accessible to all agents, and having ϕ
as its precondition. We call this action model Pub ϕ, and denote by !ϕ the (action
corresponding to the) unique point of this model. A more concrete example is the
action !¬Heartsa in Section 5.1 in which Amina publicly announces that she does
not have the hearts card: the action model is Pub¬Heartsa.

A fully private announcement of ϕ to a subgroup B is modeled by a two-point
action model, one point having precondition ϕ (corresponding to the private an-
nouncement) and the other point having precondition � := p∨¬p (corresponding
to the case in which no announcement is made):

�

�

�

�
ϕb∈B ��

c �∈B ��
�

�

�

�� a∈A��

We call this action model PriBϕ. Again, the action point on the left represents
the fully private announcement of ϕ. This action will be denoted by !Bϕ. The
action point on the right has as precondition some tautology �, and represents
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the alternative action in which no announcement is made: essentially nothing is
happening. This action will be denoted by τ .

A more concrete example of a fully private announcement model is the action
considered in Section 2.3, in which Bao was secretely informed that the coin lay
heads up, without Amina suspecting this to be happening. This corresponds to
the right-hand point in the action model Prib H:

�

�

�

�Hb ��
a ��

�

�

�

�� a,b��

Fair-game announcements with n commonly-known alternatives can be modeled
using an action model with n points, having the corresponding announcements as
preconditions. For the “insiders”, the accessibility relation is the identity relation,
while the accessibility for the “outsiders” is the universal relation (linking every
two points).

As a concrete example of fair-game announcement, the action model U for the
showclubs action in the previous section has three action points α, β, and γ, with
preconditions pre(α) = Spadesa, pre(β) = Heartsa, and pre(γ) = Clubsa. The
epistemic structure of this model is:

�

�

�

�α

a,b,c

��

��
c

����
��

��
��

��
c

���
��

��
��

�

�

�

�

�
βa,b,c ��

��
c

��
�

�

�

�
γ a,b,c��

(21)

The pointed action model of interest is (U, γ). In it, the action γ which really
happened is one where Amina and Bao come to share the knowledge that she has
clubs: no other options are available to the two of them. Chandra, on the other
hand, is in the dark about which of three announcements is taking place, but she
does know the three possible messages: Clubsa,Spadesa,Heartsa.

Similarly, the action model U′ for the action whispernospades in the previous
section has the same structure as the model U above, except that we take: pre(α) =
¬Clubsa, pre(β) = ¬Heartsa, pre(γ) = ¬Spadesa. The pointed action model of
interest is (U′, γ).

DEFINITION 16 (Execution, Product Update). Consider an epistemic state (M, s)
with M = 〈S,R, V 〉 and an epistemic action (U, α) with U = 〈S,R, pre〉. The result
of executing (U, α) in (M, s) is only defined when M, s |= pre(α). In this case, it is
the epistemic state ((M ⊗ U), (s, α)) where (M ⊗ U) = 〈S′, R′, V ′〉 is a restricted
modal product of M and U defined by

S′ ≡ {(s, α) | s ∈ S, α ∈ S, and M, s |= pre(α)}
R′

a((s, α), (t, β)) iff Ra(s, t) and Ra(α, β)
(s, α) ∈ V ′

p iff s ∈ Vp
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This restricted product construction has become known in the DEL literature
as “Product Update”. Here, we simply call it action execution. The intuition
is that indistinguishable actions performed on indistinguishable input-states yield
indistinguishable output-states: if when the real state is s, agent a thinks it is
possible that the state might be s′, and if when action α is happening, agent a
thinks it is possible that action α′ might be happening, then after this, when the
real state is (s, α), agent a thinks it is possible that the state might be (s′, α′).

EXAMPLE 17. At this point we can go back and justify all our previous state
transformers in a uniform manner. The model in Figure 7 can be obtained by
calculating Hexa ⊗!¬Heartsa, where Hexa is the model shown in Figure 4, and the
action model Pub¬Heartsa was described above. The model (6) from Section 2.3
can be computed by calculating the restricted modal product of the model (19)
from Section 5.3 and the action model PubbH above. The pointed model shown in
Figure 10 is obtained by calculating

(Hexa⊗ U, (♣♥♠, γ)),

where U is from (21) above.
Finally, we justify the pointed model in in Figure 11, by calculating

(Hexa⊗ U′, (♣♥♠, γ)),

where the action model U′ is as above. Let us look at this last calculation in more
detail: the restricted product itself contains the twelve pairs

(♣♥♠, β), (♣♥♠, γ), (♣♠♥, β), (♣♠♥, γ), (♥♣♠, α), (♥♣♠, γ),
(♥♠♣, α), (♥♠♣, γ), (♠♣♥, α), (♠♣♥, β), (♠♥♣, α), (♠♥♣, β)

The valuation only looks at the first components. For example (♥♠♣, α) |=
Heartsa ∧ Spadesb ∧ Clubsc. The epistemic relations are determined in the usual
way of products. For example, R′

c((♠♥♣, β), (♥♠♣, α)) because Chandra cannot
tell the difference between ♠♥♣ and ♥♠♣ in Hexa, and she also cannot tell the
difference between β and α in U.

5.5 Logics for epistemic actions

There is only one more step to make: to give a logical language with an inductive
construct for action models. The task of finding a natural general syntax for
epistemic actions is not an easy problem. A number of different such languages
have been proposed, see e.g., [Gerbrandy, 1999; Baltag, 2002; Baltag and Moss,
2004; van Benthem et al., 2006b; van Ditmarsch, 2000; van Ditmarsch, 2002; van
Ditmarsch et al., 2003]. We follow [Baltag and Moss, 2004], presenting here only
one type of syntax, based on the notion of signature.

DEFINITION 18 (Signature). An action signature is a finite Kripke frame Σ,
together with a list (σ1, . . . , σn) enumerating some of the elements of Σ without
repetitions. The elements of Σ are called action types.
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EXAMPLE 19. The public announcement signature Pub is a singleton frame, con-
sisting of an action type !, accessible to all agents, and the list (!).

The signature PriB of fully private announcements to a subgroup B is a two-
point Kripke frame, consisting of an action type !B (corresponding to fully private
announcements) and an action type τ (for the case in which no announcement is
made). The list is (!B), and the structure is given by:

�

�

�

	
!Ba∈A ��

b∈B �� �
�

�

�τ a∈A��

The signature of fair-game announcements (to a given group of insiders, and with
common knowledge of a given finite set of alternatives) can be similarly formalized.
For instance, the signature Showa,b for the logic of the actions showclubs and
whispernospades (with a, b as insiders and c as outsider) is a frame with three
action types listed as (σ, ρ, μ). The structure is:

�

�

�

�σ

a,b,c

��

��
c

����
��

��
��

��
c

���
��

��
��

�

�

�

�
ρa,b,c ��

��
c

��
�

�

�

�
μ a,b,c��

(22)

DEFINITION 20 (Language). For a given action signature Σ with a listing of
some of its action types (σ1, . . . , σn), the language LΣ of the logic of Σ-actions is
the union of the formulas ϕ and the epistemic actions8 α defined by

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kaϕ | CBϕ | [α]ϕ
α ::= σϕ1 . . . ϕn | α ∪ β

where p ∈ P , a ∈ A, B ⊆ A, σ ∈ Σ, and σϕ1 . . . ϕn above is an expression
consisting of an action type σ followed by a string of n formulas, where n is taken
from the listing in Σ.

The expressions of the form σϕ are called basic epistemic actions. In addition,
we have included in the language LΣ an operation of non-deterministic choice
on the actions, mainly to show the reader familiar with dynamic logic, process
algebra, and the like that it is possible to add such operations. One can also add
sequential composition, iteration (Kleene star ∗), etc.

DEFINITION 21 (Action model induced by a signature). Given an action signa-
ture Σ with its list (σ1, . . . , σn) of action types, and given a list ϕ = (ϕ1, . . . , ϕn)
of n formulas in LΣ, the action model Σϕ is obtained by endowing the Kripke

8We are using the letter α here for both action points in an action model and also for “epistemic
actions” as syntactic expressions in our language. This ambiguity should not cause problems,
but we wish to alert the careful reader of it.
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frame Σ with the following precondition map: if σ = σi is in the given list α, we
take pre(σi) := ϕi; while, if σ is not in the given list (σ1, . . . , σn), pre(σ) is taken
to be some tautology p ∨ ¬p. When seen as an action point in the action model
Σϕ, the type σ ∈ Σ is denoted by σϕ. Since the frame is the same as Σ, having
the relation σϕ→a σ′ϕ in the action model Σϕ is the same as having the relation
σ→a σ′ in the frame Σ.

EXAMPLE 22. The action model Pub ϕ from the previous section is induced
by the signature Pri above, in the obvious way. The action model PriBϕ from
the previous section is induced by the signature Pri above. The action model
U for the showclubs action in the previous section is induced by the signature
Showa,b, since it coincides with the model Showa,bSpadesaClubsaHeartsa. (This is
an action signature followed by three propositions.) The model U′ for the whis-
pernospades action is induced by the same signature, since it can be written as
Showa,b¬Clubsa¬Heartsa¬Spadesa.

DEFINITION 23 (Semantics).

M, s |= [σϕ]ψ iff M, s |= pre(σϕ) implies (M ⊗ Σϕ), (s, σϕ) |= ψ
M, s |= [α ∪ β]ϕ iff M, s |= [α]ϕ and M, s |= [β]ϕ

Note that the preconditions in an action model are arbitrary sentences in the
language, since we want to talk about announcements concerning announcements
and similar things. In fact, to avoid vicious circles, the definition of the semantics
of LΣ and the definition of action execution (as in the previous section) for action
model over LΣ should be taken to form one single definition (by simultaneous
double induction) of both concepts. As usual, 〈α〉ϕ is defined by duality as ¬[α]¬ϕ.

It is easy to see that the logic of public announcements (PAL) from Section 5.1,
the logic of fully private announcements and the logic of fair-game announcements
are examples of signature-based logics. The only syntactic difference is the pres-
ence of modalities [τϕ]ψ in the signature-based language for the signature Pri;
but it is easy to see that [τϕ]ψ is logically equivalent to ψ, and so this language
reduces to the logic of fully private announcements.

The logical system for this language is a generalization of what we have seen
for the public announcement logic earlier. A statement of it may be found in
Baltag and Moss [2004], and the completeness in the final version of Baltag, Moss,
and Solecki [1998]. For each of the operators of basic epistemic logic, one has
a Reduction Axiom which allows one to push the dynamic (action) modalities
past that operators, given a certain context. But the main difficulty comes in
the combination of the action modality with common knowledge statements. An
alternative system which uses the relativized common knowledge operators may
be found in van Benthem, van Eijck and Kooi [2006b]. Since we are not going to
need any of these systems or any of their interesting fragments, we leave matters
at that. The only exception is the generalization of the Announcement-Knowledge
Axiom, which we deem worth explaining in some detail.
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The Action-Knowledge Axiom The Reduction Axiom for the K operator
will be a generalization of of the Announcement-Knowledge Axiom, which we call
the Action-Knowledge Axiom: for every basic action α, we have

[α]Kaϕ↔
⎛
⎝pre(α) →

∧
α→a α′

Ka[α′]ϕ

⎞
⎠ .

To state it in a more transparent form, we need the notion of appearance of an
action to an agent: for each basic action α of our language and for each agent a,
the appearance of α to a is the action

αa :=
⋃

α→a α′
α′,

where
⋃

is the non-deterministic choice of a (finite) set of actions. The action
αa describes the way action α appears to agent a: when α is happening, agent a
thinks that (one of the deterministic actions subsumed by) αa is happening. With
this notation, the Action-Knowledge Axiom says that, for every basic action α, we
have:

[α]Kaϕ↔ (pre(α) → Ka[αa]ϕ).

In other words: knowledge commutes with action modalities, modulo the satisfac-
tion of the action’s precondition and modulo the replacement of the real action
with its appearance. One can regard this as a fundamental law governing the
dynamics of knowledge, a law that may be used to compute or predict future
knowledge states from past ones, given the actions that appear to happen in the
meantime. The law embodies one of the important insights that dynamic-epistemic
logic brings to the philosophical understanding of information change.

Notes The action model framework has been developed by Baltag, Solecki, and
Moss, and has appeared in various forms [1998; 1999; 2002; 2004]. The signature-
based languages are introduced in Baltag and Moss [2004]. A final publication on
the completeness and expressivity results is still in preparation. A different but
also rather expressive way to model epistemic actions was suggested by Gerbrandy
in [1999]; this generalizes the results by Gerbrandy and Groeneveld in [1997]. Ger-
brandy’s action language can be seen as defined by relational composition, inter-
preted on non-wellfounded set theoretical structures corresponding to bisimilarity
classes of pointed Kripke models. Van Ditmarsch explored another relational ac-
tion language—but based on standard Kripke semantics—[van Ditmarsch, 2000;
van Ditmarsch, 2002] and was influenced by both Gerbrandy and Baltag et al. His
semantics is restricted to S5 model transformations. Van Ditmarsch et al. later
proposed concurrent epistemic actions in [van Ditmarsch et al., 2003]. How the
expressivity of these different action logics compares is unclear. Recent develop-
ments include a proposal by Economou in [2005]. Algebraic axiomatizations of a
logic of epistemic actions may be found in [Baltag et al., 2005] and [Baltag et al.,
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2007, to appear], while a coalgebraic approach is in [Cı̂rstea and Sadrzadeh, 2007].
A logic that extends the logic of epistemic actions by allowing for factual change
and by closing epistemic modalities under regular operations is axiomatized in [van
Benthem et al., 2006b]. A probabilistic version of the action model framework is
presented by van Benthem, Gerbrandy and Kooi in [2006a]. For a more extensive
and up-to-date presentation of dynamic epistemic logic (apart from the present
contribution), see the textbook ‘Dynamic Epistemic Logic’ by van Ditmarsch, van
der Hoek, and Kooi [2007].

6 TEMPORAL REASONING AND DYNAMIC EPISTEMIC LOGIC

It is very natural in a conversation about knowledge to refer to the past knowledge
of oneself or others: I didn’t know that, but now I do. We have already mentioned
briefly the “Mr. Sum and Mr. Product” puzzle, illustrating that agents’ comments
on the past ignorance and knowledge of others can lead to further knowledge. In
addition, all treatments of the Hangman paradox mentioned in Section 3.7 must
also revolve around the issue of temporal reasoning concerning the future.

We begin with a scenario in which agent’s knowledge and ignorance reverses
itself more than once. We present an example, due to Sack [2007], because the
natural summation of it involves statements about past knowledge.

Our three players Amina, Bao, and Chandra are joined by a fourth, Diego.
They have a deck with two indistinguishable ♠ cards, one ♦ and one ♣. The
cards are dealt, and in the obvious notation, the deal is (♠,♠,♦,♣). We assume
that the following are common knowledge: the distribution of cards in the deck,
the fact that each player knows which card was dealt to them, and that they do
not initially know any other player’s card. Then the following conversation takes
place:

i. Amina: “I do not have ♦.”

ii. Diego: “I do not have ♠.”

iii. Chandra: “Before (i), I knew ϕ: Bao doesn’t know Amina’s card. After (i),
I did not know ϕ. And then after (ii), I again knew ϕ.”

All three statements are intuitively correct. After Amina’s statement, Chandra
considers it possible that the world is w = (♠,♣,♦,♠). In w after the announce-
ment, Bao does know that Amina holds ♠, so ϕ is false. But Amina no longer
reckons this world w to be possible after Diego’s announcement. Indeed, she only
considers possible v = (♠,♠,♦,♣). And in v after both announcements, Bao
thinks that (♣,♠,♠,♦) is possible. Hence ϕ holds, and Chandra knows that it
does.

Our first order of business is to extend the kind of modeling we have been doing
to be able to say the sentence in (iii), and also to prove it in a logical system.
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6.1 Adding a ‘yesterday’ operator to the logic of public announce-
ments

To get started, we present here the simplest temporal extension of the simplest
dynamic epistemic logic, the logic of public announcements from Section 5.1. We
think of a multi-agent epistemic model M0 subject to a sequence of public an-
nouncements of sentence ϕ1, ϕ2, . . ., ϕn. These determine models Mi: M0 is
given, and for i < n, Mi+1 is given by taking submodels via Mi+1 = Mi|ϕi+1. We
add a single operation Y to the language, with the intended semantics that Y ϕ
means that ϕ was true before the last announcement. Formally, we would set

Mi, w |= Y ϕ iff Mi−1, w |= ϕ (23)

There are two problems here, one minor and one more significant. The slight
problem: what to do about sentence Y ϕ in the original model M0? The choice is
not critical, and to keep our operators �-like, we’ll say that all sentences Y ϕ are
automatically true in M0, w.

The larger problem has to do with the semantics of public announcement sen-
tences [!ψ]χ. We know how to deal with announcement of one of the ϕ sentences
with which we started, since these figure into the definition of the models Mi. But
for announcement of other sentences, those models are of no help. One solution is
to think in terms of histories

H = (M0, ϕ1,M1, ϕ2, . . . ,Mn−1, ϕn,Mn) (24)

Again, we require that the models and sentences be related by Mi+1 = Mi|ϕi+1.
We recast (23) as a relation involving a history H as in (24) and a world w ∈Mn:

H,w |= Y ϕ iff i = 0, or w ∈Mn−1 implies (M0, ϕ1, . . . ,Mn−1), w |= ϕ
H,w |= [!ψ]χ iff H,w |= ψ implies (M0, ϕ1, . . . ,Mn, ψ,Mn|ψ), w |= χ

So the effect of public announcements is to extend histories.
We turn to the logical principles that are reflected in the semantics. The decision

to have Y be �-like means that the distribution axiom and the rule of necessitation
formulated with Y are going to be sound for the logic. Here are the additional
logical principles that are sound for this semantics (true in all worlds in all models
in all histories):

(p→ Y p) ∧ (¬p→ Y ¬p) atomic permanence
¬Y⊥ → (Y ¬ϕ→ ¬Y ϕ) determinacy
(Y⊥ → KaY⊥) ∧ (¬Y ⊥ → Ka¬Y⊥) initial time
(ϕ→ ψ) ↔ [!ϕ]Y ψ action-yesterday
Y Kaϕ→ KaY ϕ memory

These are due to Yap [2006] and Sack [2007]. In these, p must be atomic. And ⊥ is
a contradiction, so Y⊥ is only true at the runs of length 1. Most of the axioms are
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similar to what we have seen in other systems, except that one must be careful to
consider those runs of length 1. The initial time axiom implies that it is common
knowledge whether the current history is of length 1 or not The memory axiom is
named for obvious reasons. Notice that the converse is false.

Sack’s dissertation [Sack, 2007] also contains the completeness proof for this
logic, with common knowledge operators added. In fact, his work also includes
operators for the complete past (not just the one step ‘yesterday’), the future,
and also arbitrary epistemic actions formulated in the same language. This means
that one can model private announcements concerning the past knowledge of other
agents, to name just one example. His language also contains nominals to allow
reference to particular states (we do not discuss these here) and also allows agents
to, in effect, know what epistemic action they think just took place.

Returning to the flip-flop of knowledge In the previous section we presented
a scenario that involved statements of previous knowledge and ignorance. Here is
how this is formalized. Let ϕ be ¬(KbSpadesa ∨KbDiamondsa ∨KbClubsa). Then
a formalized statement of the entire conversation would be

〈!¬Diamondsa〉〈!¬Spadesd〉(Y Y Kaϕ ∧ Y ¬Kaϕ ∧Kaϕ).

All of the background information about the scenario and the initial deal can be
written as a sentence ψ in the language, assuming that we have common knowledge
operators. Then the fact that we have a completeness result means that ψ � ϕ
in the proof system. The logic is moreover decidable. As a result, it would be
possible to have a computer program find a formal proof for us.

6.2 The future

Adding temporal operators for the future is more challenging, both conceptually
and technically. To see this, let us return to the modeling of private announcements
which we developed in Example 15 in Section 5.4. The way we modeled things,
private announcements to groups seem to come from nowhere, or from outside the
system as a whole. Let us enrich this notion just a bit, to see a simple setting in
which temporal reasoning might be profitably modeled.

Consider a setting where each individual agent a might send a message m to
some set B of agents, with the following extra assumptions: (0) m is a sentence in
whatever language we are describing; (1) the names of the recipient agents B are
written into m; (2) sending m take arbitrarily long, but eventually each agent in
B will receive m; (3) all agents in B receive m at the same time; (4) the sending
and receipt of messages is completely private; (5) at each moment, at most one
message is sent or received; (6) messages are delivered in the order sent. We make
these assumptions only to clarify our discussion, not because they are the most
realistic or useful.

One might like to have temporal operators in the language so that agents can
“say” sentences like at some future point, all agents in B will receive the message
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I just sent, resulting in the common knowledge for this group of ϕ, or I sent m1

and then m2 to b, and the message I received just now from b shows me that it
was sent between the time b received m1 and the time he received m2.

At the time of this writing, there are no formalized systems which include knowl-
edge and temporal operators, epistemic actions as we have been presenting them in
this chapter, and also have temporally extended events such as the asynchronous
message passing we have just mentioned. There is a separate tradition from the
computer science literature which incorporates temporally extended events, knowl-
edge, and temporal assertions along different lines than this chapter. We are going
to present the ideas behind one of those approaches, that of interpreted systems.

Before that, we want to mention a different approach, the history-based seman-
tics of messages due to Parikh and Ramanujam [2003]. This work has a different
flavor than interpreted systems. (But the two are equivalent in the sense the se-
mantic objects in them may be translated back and forth preserving truth in the
most natural formal language used to talk about them. See Pacuit [to appear]
for this comparison.) The only reason we present the interpreted systems work
instead is that it has a larger literature.

6.3 Interpreted systems and temporal epistemic logic

A general framework involving information change as a feature of interpreted sys-
tems was developed by Halpern and collaborators in the 1990s [Fagin et al., 1995].
There are a few basic notions.

We start with a collection of agents or processors, each of which has a local state
(such as ‘holding clubs’ for agent Amina), a global state is a list of all the local states
of the agents involved in the system, plus a state of the environment. The last
represents actions, observations, and communications, possibly outside the sphere
of influence of the agents. An example global state is (♣♥♠, ∅) wherein Amina has
local state ♣, i.e., she holds clubs, Bao local state ♥, and Chandra local state ♠,
and where ‘nothing happened so far in the environment,’ represented by a value
∅. It is assumed that agents know their local state but cannot distinguish global
states from one another when those states have the same local state. This induces
an equivalence relation among global states that the reader will will play the role
of an accessibility relation. Another crucial concept in interpreted systems is that
of a run: a run is a (typically infinite) sequence of global states. For example,
when Amina says that she does not have hearts, this corresponds to a transition
from global state (♣♥♠, ∅) to global state (♣♥♠, nohearts). Atomic propositions
may also be introduced to describe facts. For example, not surprisingly, one may
require an atom Heartsa to be true in both global state (♣♥♠, ∅) and in global
state (♣♥♠, nohearts).

Formally, a global state g ∈ G is a tuple consisting of local states ga for each
agent and a state gε of the environment. A run r ∈ R is a sequence of global
states. The m-th global state occurring in a run r is referred to as r(m), and the
local state for agent a in a global state r(m) is written as ra(m). An interpreted
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(♣♥♠, u♥) (♣♠♥, u♥)

(♣♥♠, y♥) (♣♠♥, n♥)

Heartst ¬Heartst

Figure 12. Amina holds clubs, hearts is on top of spades on the two-card stack on
the table, and Amina does not know (in the underlined, actual global state) if it
is. The two visualized runs reveal which card is on top.

system I is a pair (G,R) consisting of a set of global states G and a set of runs R
relating those states.

A point (r,m) is a pair consisting of a run and a point in time m—this is
the proper abstract domain object when defining epistemic models for interpreted
systems. In an interpreted system, agents cannot distinguish global states from
one another iff they have the same local state in both, which induces the relation
shown below:

(r,m)∼a (r′,m′) iff r(m)∼a r′(m′) iff ra(m) = r′a(m′)

(For an indistinguishability relation that is an equivalence, we usually write ∼
instead of R.) With the obvious valuation for local and environmental state val-
ues, that defines an epistemic model. For convenience we keep writing I for that.
Given a choice of a real (or actual) point (r′,m′), we thus get an epistemic state
(I, (r′,m′)). Epistemic and (LTL) temporal (next) operators have the interpreta-
tion

I, (r,m) |= Xϕ iff I, (r,m+ 1) |= ϕ
I, (r,m) |= Kaϕ iff for all (r′,m′) : (r,m)∼a (r′,m′) implies I, (r′,m′) |= ϕ

It will be clear that subject to some proper translation (see e.g. [Lomuscio,
1999]) interpreted systems correspond to some subclass of the S5 models: all
relations are equivalence relations, but the interaction between agents is even more
than that. The relation between Kripke models and interpreted systems is not
entirely trivial, partly because worlds or states in Kripke models are abstract
entities that may represent the same set of local states. The main difference
between the treatment of dynamics in interpreted systems and that in dynamic
epistemics is that in the former this is encoded in the state of the environment,
whereas in the latter it emerges from the relation of a state (i.e., an abstract state
in a Kripke model) to other states.

Example For a simple example, consider the single agent the case of our three
players as usual. Suppose that Amina holds clubs, and the hearts card is on
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top of the spades card (both facedown) on the table. She may now be informed
about the card on top of the stack. This is represented by the interpreted sys-
tem depicted in Figure 12. It consists of four global states. The card Amina
holds represents her local state. The other cards are (in this case, unlike in
the three-agent card deal) part of the environment. The state of the environ-
ment is represented by which of the two cards is on top, and by an ‘observa-
tion’ state variable obs that can have three values u♥, y♥, and n♥, correspond-
ing to the state before the announcement which card is on top, the state re-
sulting from the announcement that hearts is on top, and the other state re-
sulting from the announcement that it is at the bottom. The valuation V is
now such that V (Clubsa) = {(♣♥♠, u♥), (♣♠♥, u♥), (♣♥♠, y♥), (♣♠♥, n♥)}, and
V (Heartst) = {(♣♥♠, u♥), (♣♥♠, y♥)}. The system consists of two runs, one from
(♣♥♠, u♥) to (♣♥♠, y♥) (optionally extended with an infinite number of idle transi-
tions), and the other run from (♣♠♥, u♥) to (♣♠♥, n♥). One can now compute that
in the actual state (♣♥♠, u♥) it is true that ¬KaHeartst, but in state (♣♥♠, y♥)
she has learned that hearts is on top: Ka¬Heartst is now true. For another ex-
ample: in the actual state XKaHeartst. How the treatment of announcements in
interpreted systems relates to public announcement logic will be made precise at
the end of the following section.

Interpreted systems have been highly successful as an abstract architecture for
multi-agent systems, where agents are either human operators or computer pro-
cessors, and where the assumption that an agent ‘knows its own state’ is a realistic
simplification. For that reason they can be said to model interaction between ideal
agents. This assumption is also implicitly applied when modeling perfectly ratio-
nal agents as in game theory and economics. Also, given that all the dynamics is
explicitly specified in the runs through the system, it combines well with temporal
epistemic logics (LTL, CTL) wherein dynamics is implicitly specified by referring
to an underlying structure wherein such a change makes information sense. Tem-
poral epistemic logics have been fairly successful. Their computational properties
are well-known and proof tools have been developed. See, for example, [van der
Meyden, 1998; Dixon et al., 1998; Halpern et al., 2004]. The work of Fagin et
al. [1995] also generated lots of complexity results on knowledge and time, we also
mention the work of van der Meyden in this respect, e.g. [van der Meyden, 1994;
van der Meyden, 1998].

There are two rather pointed formal differences between the temporal epistemic
approach and the dynamic epistemic approach.

Closed versus open systems First, the temporal epistemic description takes
as models systems together with their whole (deterministic) history and future
development, in the shape of ‘runs’. As such, it can be easily applied to ‘closed’
systems, in which all the possible developments are fixed in advance, where there
are no accidents, surprises or new interactions with the outside world, and thus the
future is fully determined. Moreover, in practice the approach is more applicable
to closed systems having a small number of possible moves: that’s the only ones for
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which it is feasible to work explicitly with the transition graph of the full history.
The dynamic epistemic approach is better suited to ‘open’ systems. This is for

example the case with epistemic protocols which can be modified or adapted at any
future time according to new needs, or which can interact with an unpredictable
environment. But it is also applicable to closed systems in which the number of
possible different changes is large or indefinite.

There are two analogies here. The first is with open-versus-closed-system para-
digms in programming. People in concurrency are usually interested in open sys-
tems. The program might be run in many different contexts, in the presence of
many other programs, etc. More recently (in the context of mobile computation),
people have looked at approaches that allow programs to be changed at any time
inside the same logical frame. The temporal logic approach is not fit for this,
since it assumes the full current program to be fixed and given as ‘the background
model’. That is why people in this area have used totally different kinds of for-
malisms, mainly process algebraic, such as the π-calculus. In contrast to that,
dynamic epistemic logics are interesting in that, although based on a modal logic,
which is not an algebraic kind of formalism, they are able to express changes in
an open system through the semantic trick of changing the models themselves, via
‘epistemic updates’.

The second analogy is with game theory. The temporal approach is like the
description of a game through explicitly giving its full extensive form: the graph
of all possible plays. For instance, chess (in this approach) is defined as the set of
all possible chess plays. But there is another way to describe a game: by giving
only the ‘rules of the game’ (which type of actions are allowed in which type
of situations), together maybe with an ‘initial state’ (or set of states) and some
‘winning rules’. This is a much more economical and way to describe a game, and
it is more common as well. Of course, once this description is given, one could
draw the game in extensive form as the set of all plays, if one is given enough
computational power. . . If we neglect the aspects of the game that deal with who
wins (and what), the dynamic epistemic approach can naturally describe epistemic
games in precisely this way: one gives an epistemic Kripke model of ‘initial states’
and also an epistemic Kripke model or other semantically precise description of
possible ‘epistemic actions’, including preconditions that tell us on which type of
states a given action may be applied. Then one can play the game by repeatedly
updating the state model with the action model. A ‘full play’ or ‘run’ of the game
is obtained when we reach a state (at the end of many updates) on which no action
(in our given action model) can be applied.

Information change description The second difference between the inter-
preted systems and the dynamic epistemics approach simply concerns the ability
to model and classify various ‘types’ or ‘patterns’ of information change, or in-
formation exchange, such as public announcements, private announcements, game
announcements etc. The dynamic epistemic approach obviously has this in-built
ability, while the temporal approach doesn’t have it, at least not in a direct, usable
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manner. There is nothing like an “announcement”. All of the structure is encoded
in the set of runs that serves as a model. Even the semantics of knowledge uses
this set of runs, and so if one wants to use this as a model of real knowledge,
it means that the agents must have implicit access to the overall model. To put
it differently, in the temporal approach, one can only say what is true ‘before’
and ‘after’ a given action, and thus only implicitly get some information about
the type of the action itself, through its input-output behavior. Moreover, this
information is not enough to isolate the type of the action, since it only gives
us the local input-output behavior of a given action; and different actions may
behave identically in one local context, but differ in general. For instance in the
two players and two cards case, in an epistemic state in which the fact that the
card deal is ♣♥♠ is common knowledge, a public announcement of that fact will
have the same input-output description as a ‘skip’ action corresponding to ‘noth-
ing happens’. But in the epistemic state where the cards were dealt but not seen,
or the subsequent one where all players only know their own card, this fact was
not common knowledge and its public announcement will in that case induce an
informative (i.e. non-skip) transition. For the same reason, actions like private
announcements, announcements with suspicion, etc., are harder to model in the
interpreted systems approach.

A number of people are investigating the relation between dynamic epistemic
logic and either interpreted systems or history-based models. One should see, for
example, van Benthem and Pacuit [2006] for hints in this direction and also for
related work on temporal epistemic reasoning.

7 BELIEF CHANGE AND DYNAMIC EPISTEMIC LOGIC

Our final section is concerned with the interaction of DEL with the topic of belief
revision. The material of this section is very new and still in a state of flux, so our
discussion here cannot claim in any way to represent the definitive word on the
matter.

Here is our plan for the section: First, we briefly present the classical AGM the-
ory of belief revision. We then briefly mention some dynamic (but non-epistemic)
versions of AGM. Finally, we present some of the recent work that incorporates
belief revision into the DEL framework, in an attempt to overcome the above-
mentioned classical problems: the work of van Benthem on the dynamic logic of
belief upgrades, the action plausibility models of Aucher and van Ditmarsch, and
the action-priority update of Baltag and Smets. As before, we follow a “logical”
rather than a historical order, leaving the history for the Notes at the end of each
section.

Classical AGM theory A belief set (or theory) is a set K of sentences in some
language. We at first take the language to be propositional logic, but we are keen
to extend this to various modal languages, where the modalities are either one of
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the knowledge or belief modalities which we have already seen, or an operation
coming from this subject itself.

The notion of a belief set is intended to model the set of sentences believed
by some agent. So to incorporate the reasoning of the agent, one usually works
on top of some logical system or other and then requires belief sets to be closed
under deduction in the system; they need not be consistent, however. They cer-
tainly need not be complete either: we might have ϕ /∈ K and ¬ϕ /∈ K as well.
The AGM theory of belief revision deals with changes to an agent’s belief set
when presented with a new sentence ϕ. The main point is that ϕ might conflict
with what the agent believes, and so the theory is exactly about this issue. The
theory is named for its founding paper, the celebrated Alchourrón, Gärdenfors,
and Makinson [1985]. Overview publications include Gärdenfors [1988] and most
notably for us, Chapter 4c by Hans Rott.

The AGM theory employs three basic operations and presents postulates con-
cerning them. Since belief sets are sets, the overall theory is second-order. More-
over, it is an interesting issue to then construct and study semantic models of the
AGM postulates, or of related ones.

The first operation is called expansion. Intuitively, this is what happens when
the agent takes K as a given and simply adds ϕ as a new belief. We write K + ϕ
for the result. The postulates for expansion as follows:

(1) Closure K + ϕ is a belief set.
(2) Success ϕ ∈ K + ϕ
(3) Inclusion K ⊆ K + ϕ
(4) Vacuity If ϕ ∈ K, then K = K + ϕ.
(5) Monotonicity If J ⊆ K, then J + ϕ ⊆ K + ϕ.
(6) Minimality K + ϕ is the minimal set with (1) – (5).

It is easy to check that these postulates exactly capture the operation of taking
the consequences of K ∪ {ϕ} in the underlying logical system.

More interesting are the other two operations, contraction and revision. Intu-
itively, the contraction of K by ϕ models the result of the agent’s giving up the
belief in ϕ and doing this without giving up too much. Revision models changing
K to definitely include ϕ. There are postulates for both operations, and we are
only going to spell out those for revision. The reason is that on top of the pos-
tulates for expansion, those of revision determine the contraction operation (and
vice-versa). We write the revision operation as K ∗ϕ. The postulates are:

(1) Closure K ∗ϕ is a belief set.
(2) Success ϕ ∈ K ∗ϕ
(3) Inclusion K ∗ϕ ⊆ K + ϕ
(4) Preservation If ¬ϕ /∈ K, then K + ϕ ⊆ K ∗ϕ.
(5) Vacuity K ∗ϕ is inconsistent iff ¬ϕ is provable.
(6) Extensionality If ϕ and ψ are equivalent, then K ∗ϕ = K ∗ψ
(7) Subexpansion K ∗ (ϕ ∧ ψ) ⊆ (K ∗ϕ) + ψ
(8) Superexpansion If ¬ψ /∈ K ∗ϕ, then K ∗ (ϕ ∧ ψ) ⊇ (K ∗ϕ) + ψ.
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The result of a contraction operation K − ϕ satisfying some postulates which we
did not list turns out to be the same as K ∩ (K ∗¬ϕ); this is called the Harper
identity. And given a contraction operation satisfying the postulates, one can
define revision by the Levi identity K ∗ϕ = (K−¬ϕ)+ϕ; this operation will then
satisfy the eight postulates above.

One important issue in the area is the relation between belief revision and the
older topic of conditional logics which began with Lewis’ book [1969]. To see what
this is about, assume that we are working over a logical system with a symbol ⇒
that we want to use in the modeling of some natural language conditional, say the
subjunctive one. Then a belief set K might well contain sentences ϕ ⇒ ψ and
¬ϕ. So in this context, we would like or even expect to have ψ ∈ K ∗ϕ. In other
words, we ask about the condition

ϕ⇒ ψ ∈ K iff ψ ∈ K ∗ϕ.
This is called the Ramsey test. A key result in the subject is Gärdenfors’ Impossi-
bility Theorem: there is no operation of revision on belief sets which both satisfies
the postulates of ∗ and also the Ramsey test. (The result itself depends on some
non-triviality condition which we ignore here.)

Although the literature on belief revision may be read as a discussion of changes
in belief, it may also be read as an extended discussion about the correspondence
between various axiom systems and types of semantic structures. These include
structures akin to what we have seen. In particular, the sphere systems of Grove
(based on earlier work of Lewis) come from belief revision theory.

7.1 Dynamic versions of revision theory

Moving now to a more semantical setting, we show how some of the operations
which we have already seen can be interpreted as belief change operators. We then
present some dynamic versions of AGM: the Katsuno-Mendelzon theory KM of
belief update, de Rijke’s dynamic modal logic DML and Segerberg’s dynamic
doxastic logic DDL. These are all dynamic in some sense, but not “epistemic”
in that knowledge is not modeled via the Kripke (relational) semantics, or any
other semantics for that matter. We mention some of the difficulties and problems
encountered by classical belief revision theory.

Examples of belief change via dynamic epistemic logic Consider express-
ing and changing uncertainty about the truth of a single fact p, and assume an
information state where the agent (whose beliefs are interpreted by the unlabeled
accessibility relation depicted) may be uncertain about p and where p is actually
false (indicated by ‘designating’ the actual state by underlining it). Figure 13 lists
all conceivable sorts of belief change.

In the top structure, uncertainty about the fact p (i.e., absence of belief in p and
absence of belief in ¬p) is changed into belief in ¬p. On the left, ¬Bp is true, and
on the right B¬p. In the second from above, belief in p is weakened to uncertainty
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Removing access and/or worlds: for belief expansion

� � �

���

Adding access and/or worlds: for belief contraction

� � � �

��

Changing access or domain: for belief revision

� � �

���

Changing valuations: for update instead of revision

� � � ��

� �� �

Figure 13. Possible changes of belief mirrored in Kripke structure transitions
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about p, and in the third from above we change from Bp to B¬p. Note that also
in this semantic setting of Kripke-structure transformation, belief revision can
again be seen as a contraction followed by an expansion, so we may in principle
consider semantic alternatives for the Levi-identity. The last information state
transition in Figure 13 depicts factual change. The state with changed valuation
has suggestively been renamed from 1 to 00, although formally, of course, it is only
the valuation of a named state that changes. The ‘assignment’ or substitution
p := ⊥ indicates that the valuation of atom p is revised into the valuation of the
assigned formula. As this is ⊥, the new valuation of p (seen as a subset of the
domain) is now the empty set of states.

Updates and the KM theory A topic in traditional belief revision comes
under the name of ‘update’. An update—unfortunately a clash cannot be avoided
with the more general meaning of that term in dynamic epistemic logic, where
it incorporates belief revision as well—is a factual change, as opposed to a belief
change in the three previously distinguished notions. The latter merely express a
different agent stance towards a non-changing world, but in an ‘update’ the world
itself changes. The standard reference for updates in belief revision is Katsuno
and Mendelzon [1991]. Recent investigations on updates (factual change) in a
dynamic epistemic setting are [van der Meyden, 1998; van Benthem, 1996; Kooi,
2007]. These ideas also deserve to be properly applied to the belief revision arena.

We mention one of the motivating examples, mainly to contrast with the AGM
postulates. It is taken directly from [Katsuno and Mendelzon, 1991].

Consider a belief set with two atomic propositions, b and m, standing for “there
is a book on the floor” and “there is a magazine on the floor”. Suppose that

K = ↑ {b ∧ ¬m,m ∧ ¬b},

where the arrow denotes the deductive closure in propositional logic. This models
a situation in which an agent believes that exactly one item is on the floor, but
does not have a specific belief of which it is. Suppose we wish to change the world
by instructing a robot (as they have it) to put the book on the floor. So we wish to
consider K ∗ b or K+b. Now K+b =↑ {b∧¬m}. As for K ∗ b, since ¬b /∈ K, we see
from the Inclusion and (especially the) Preservation postulates that K ∗ b = K+ b
anyways. In particular, ¬m ∈ K ∗ b. This seems like an unintuitive result: given
that we want to model a change in the world resulting from putting the book on
the floor, why should we believe afterwards that the magazine is not on the floor?
The KM theory addresses this by proposing AGM-like postulates on the matter
of update, the phenomenon illustrated in this example.

Belief change with dynamic non-epistemic logic The three ‘theory change
operators’ ⊕, �, and � can be reinterpreted as dynamic modal operators. A
straightforward way to model these operators would be a logic in which [�ϕ]ψ
expresses that after revision with ϕ, (the agent believes) ψ. This approach was
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suggested by van Benthem in [1994]9 and further developed by de Rijke in [1994].
They propose a semantical counterpart of a total order on theories, in the form
of ‘updating’ and ‘downdating’ relations between states or worlds, standing for
theories, and interpret the modal operator as a transition in such a structure
according to these relations. ‘Updating’ models expansion: it relates the current
state to states that result from expansion. ‘Downdating’ models contraction. It
relates states that result from contraction to the current state. Revision is indeed
downdating followed by updating. In this overview we focus on approaches that
extend epistemic logics, therefore we do not give more details on this non-epistemic
approach.

Dynamic Doxastic Logic (DDL) In the approach by Segerberg and collab-
orators [Lindström and Rabinowicz, 1999a; Segerberg, 1999b; Segerberg, 1999a;
Lindström and Rabinowicz, 1999b], beliefs are represented explicitly. We now
identify a theory K with the believed formulas (or some subset of the believed
formulas) in an epistemic state:

K = {ψ | M, s |= Bψ}.

As in [de Rijke, 1994] , DDL expresses belief change with dynamic modal operators
[⊕ϕ], [�ϕ], and [�ϕ]. In a typical revision where we have that ¬ϕ ∈ K, ϕ ∈ K�ϕ,
and ¬ϕ 	∈ K � ϕ, we now get

• M, s |= B¬ϕ
• M, s |= [�ϕ]Bϕ

• M, s |= [�ϕ]¬B¬ϕ
For contraction, we want that in case M, s |= Bϕ, after contraction ϕ is no longer
believed, i.e., M, s |= [�ϕ]¬Bϕ. Similarly, for expansion we aim to achieve M, s |=
[⊕ϕ]Bϕ.

This approach is known as dynamic doxastic logic or DDL. Similar to [de Rijke,
1994] it presumes a transition relation between states representing theories, but
this is now differently realized, namely using what is known as a Segerberg-style
semantics wherein factual and epistemic information— called the world compo-
nent and doxastic component —are strictly separated. A dynamic operator is
interpreted as a transition along the lines of minimal theory change set out by
this given structure, with the additional restriction that the transitions describe
epistemic (doxastic) change only, and not factual change. This restriction is en-
forced by not allowing the ‘world component’ to change in the transition relation
but only the doxastic component [Lindström and Rabinowicz, 1999a, p.18].

9It is only one of many topics covered in that publication, namely Section 6, pages 714–715,
‘Cognitive procedures over information patterns’. Note this work is similar to a 1991 technical
report.
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There are now two options: either we restrict ourselves to beliefs in objective
(boolean, non-epistemic) formulas, and we get what is known as basic DDL, as
in [Lindström and Rabinowicz, 1999a; Segerberg, 1999b]. Or we allow higher-
order beliefs, as in the dynamic epistemics described in previous sections of our
chapter. We thus get ‘full’ or ‘unlimited’ DDL, also discussed in [Lindström and
Rabinowicz, 1999a] but mainly in [Lindström and Rabinowicz, 1999b].

Incidentally, the semantic models of DDL are rather different from those in
this chapter, at least on the surface. They are more similar to neighborhood
models, or topological models for modal logics. These are too different from what
we have seen to allow us to present them in this chapter. Getting back to DDL
and the systems we have presented, we know of no publications offering detailed
comparisons; surely this is because the work of this section is so new. For this,
and for discussion of recent work on DDL, see Leitgeb and Segerberg [2007].

Problems of the classical theory Classical belief revision, and its dynamic
versions presented in the previous section, encounter a number of problems: the
difficulties in extending them to iterated belief revision; the multiplicity of belief
revision policies; difficulties in dealing with multi-agent beliefs and even more
with higher-order beliefs, that is beliefs about other beliefs. We refer for details to
Chapter 4c on the subject in this handbook. We are mainly interested in higher-
order beliefs and iteration. Our discussion amounts to a suggestion that the work
of this chapter can be useful in work on these matters.

If one drops the restriction to belief in objective formulas and allows higher-
order beliefs, then the standard AGM postulates lead to paradoxes. In particular,
the Success postulate for revision is problematic for sentences that involve doxastic
modalities: we have already noted in Section 5.2 that Moore sentences p ∧ ¬Kap
are not successful. Similar examples apply to formalisms which have the syntactic
means to specify semantic properties of evident interest. We now continue with
the in-depth treatment of recent dynamic epistemic approaches to belief revision.
The hallmark of the approach is that the transition that interprets the dynamic
operators is constructed (as a state transformer) from the (specific action of an-
nouncing the) revision formula, instead of assuming as given such a transition
relation.

7.2 The dynamic logic of belief change

This section is mainly based on the work of J. van Benthem [2006; 2004] on the dy-
namic logic of belief change and “preference upgrade” (with some additional input
from Baltag and Smets [2006a]). Essentially, this work uses the DEL paradigm
to develop a logic for belief change that completely solves the problems posed to
belief revision by multi-agent beliefs and higher-order beliefs, iterated revision,
as well as partially addressing the problem of the multiplicity of belief revision
policies.
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Static versus dynamic belief revision The first fundamental distinction un-
derlying this work is the one between static and dynamic belief revision (in the
terminology of [Baltag and Smets, 2006a; Baltag and Smets, 2007b]): the first
has to do with conditional beliefs, while the second has to do with the beliefs
acquired after a belief-changing action. The distinction is only significant when
dealing with higher-order beliefs: in the case of factual beliefs, the two types of
revision coincide. Static belief revision captures the agent’s changing beliefs about
an unchanging world. But, if we take the “world” as incorporating all the agents’
higher-order beliefs, then the world is in fact always changed by our changes of
belief (as shown above, using examples involving Moore sentences). As a conse-
quence, the best way to understand static belief revision with a proposition P
is as expressing the agent’s revised beliefs, after learning P , about what was the
case, before the learning. In contrast, dynamic belief revision captures the agent’s
revised beliefs about the world as it is after revision.

Static revision as conditional belief Classical AGM theory deals with chang-
ing beliefs about an unchanging world. In our terminology, it is static belief
revision. In a modal logic setting, it is natural to formalize static revision as hypo-
thetical belief change, using conditional belief operators10 Bα

aϕ, as in Section 4.7:
if K is agent a’s current belief set at state s and ∗a is her belief revision opera-
tor, then writing s |= Bϕ

aψ is just a way of saying that ψ ∈ K ∗ aϕ. Based on
the above discussion, we can thus read a doxastic conditional Bϕ

aψ as follows: if
learning ϕ, agent a would come to believe that ψ was the case (before the learn-
ing). The semantics is given by plausibility models (or systems of Grove spheres,
see Section 2.4), as in Section 4.7, with a conditional belief Bϕ

aψ defined via the
the most plausible states (satisfying ϕ) and being epistemically indistinguishable
from the current state). If we translate the AGM postulates into the language of
conditional beliefs, while taking into account the concept of “(fully introspective)
knowledge” and the limitations that it poses to belief revision, we obtain the ax-
ioms of conditional doxastic logic CDL from Section 4.7.11 In particular, observe
that the AGM Success postulate is valid for static belief revision, even if we allow
doxastic modalities (and thus higher-order beliefs) in our language: it is always
true (even for Moore sentences ϕ) that, after learning that ϕ is the case, agents
come to believe that ϕ was the case (before the learning).

In contrast, a statement [!ϕ]Baψ involving a dynamic modality says that after
learning ϕ, agent a would come to believe that ψ is the case (in the world after the
learning). Due to Moore-type sentences, dynamic belief revision will not satisfy
the AGM postulates (and in particular, the Success postulate will fail).

10It may seem that the failure of Ramsey’s test for AGM revision would conflict with a
conditional belief interpretation of AGM. But this is not the case. In the conditional belief
setting, Gardenfors’ impossibility result simply shows that “a conditional belief” is not the same
as “a belief in a conditional”; more precisely, there doesn’t exists any non-epistemic, non-doxastic
notion of conditional that would validate this equivalence. For more on this, cf. Leitgeb [2007].

11The translation is carried out in detail in [Baltag and Smets, 2006a].
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Triggers of information change As van Benthem [2006] observes, in order
to understand and formalize dynamic belief revision, it is essential to take into
account the actual “learning event” that “triggered” the belief change. For exam-
ple, our beliefs about the current situation after hearing a public announcement
are different from our beliefs after receiving a fully private announcement. In the
public case, we may come to believe that the content of the announcement is now
common knowledge (or at least common belief); in the private case, we may come
to believe the opposite: that the content of the announcement forms now our secret
knowledge. In contrast, our beliefs about the triggering action are irrelevant as far
our static revision is concerned: our conditional beliefs about the current situation
given some hypothetical information do not depend on the way this information
might be acquired. This explains a fact observed in [van Benthem, 2006], namely
that by and large, the standard literature on belief revision (or belief update)
does not mention in any way the explicit triggers (the actual doxastic events) that
cause the belief changes (dealing instead only with types of abstract operations on
beliefs, such as update, revision and contraction etc). The reason for this lies in
the static character of AGM revision, as well as its restriction (shared with the
KM updates and basic DDL) to one-agent, first-level, factual beliefs.

This is where the DEL paradigm can help: as already seen in this chapter, DEL
explicitly analyzes the triggers for information change, from simple announcements
of facts to individual agents to complex information-carrying events, involving
many agents and their different perspectives on the learning event.

Revision as relation change If we model static beliefs (including conditional
beliefs) using plausibility relations, then dynamic belief revision corresponds to
relation change: the model is modified by changing the plausibility arrows. Dif-
ferent types of dynamic belief revision (induced by different triggering events) will
correspond to different such changes. In other words, we can model the triggers of
belief revision as relation transformers, similarly to the way we previously modeled
knowledge updates as epistemic state transformers.

Hard versus soft information The second fundamental distinction made in
[van Benthem, 2006] is between learning ‘hard facts’ and acquiring ‘soft informa-
tion’. Unlike in the classical belief-revision setting, in an epistemic-logic setting
we need to distinguish between the announcements that lead to knowledge (in the
absolute, un-revisable sense) of some hard fact and the ones that only affect our
beliefs. The first type is exemplified by the “truthful public announcement” ac-
tions ! P , that we have already seen. The second type will correspond to “soft”
informational actions, of the kind that is more standard in belief revision. One
can also have more complex mixtures of hard and soft information, giving rise to
more complex belief-revision policies.

Defining, classifying, and axiomatizing belief-revision policies We men-
tioned PDL in Section 4.9, and one reason for doing so is the work here. The
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natural language to define relation changes is the set of programs of PDL: one
can then redefine the plausibility relations Ra (corresponding to the “at least as
plausible as” relations ≤a in Section 4.7), via a clause of the form

Ra := π(Ra),

where π(Ra) is any PDL program built using tests ?ϕ, the universal relation �,
the old plausibility relations Ra and regular operations on relations: union ∪, com-
position ; and iteration ∗. In other words, one can use a relation transformer π(r)
as in Section 4.9, and redefine the plausibility relations via Ra := [[π(r)]](Ra). In
their analysis of revision policies, van Benthem and Liu [2004] propose as a natural
class of relation transformers the ones that are definable in PDL without iteration,
showing that these are particularly well-behaved. In particular, one can read off
the relational definition a set of reduction laws for each such relation transformer,
automatically providing a complete axiomatization of the corresponding dynamic
logic. It is important to note that the reduction laws that are immediately ob-
tainable through this method are for the safe belief 12 and knowledge modalities,
not for conditional belief. But one can derive reduction laws for conditional be-
lief in many instances, using the observation made in Section 4.8 concerning the
definability of conditional belief in terms of knowledge and safe belief.

Examples of definable revision policies and their reduction laws: We
give here only three examples of multi-agent belief-revision policies: truthful pub-
lic announcements of hard facts, lexicographic update and conservative upgrade.
They were all introduced by van Benthem in [2006] as dynamic multi-agent ver-
sions of revision operators previously considered by Rott [2004] and other authors.
In each case, we give here only one example of a reduction law, namely the ana-
logue for belief of the DEL Action-Knowledge Axiom which we mentioned in
Section 5.5.
1. Belief change under hard information Truthful public announcements !ϕ
of hard facts can be considered as a (limit-)case of belief revision policy. Instead
of defining it by world elimination as before, we can equivalently define it using
the relation transformer

π(r) = ?ϕ; r; ?ϕ.

So the new accessibility relations are Ra := [[π(r)]](Ra), where Ra are the old
relations. (See Example 10 in Section 5.1.) The corresponding Reduction Axiom
for belief is

[!ϕ]Baθ ↔ (ϕ→ Bϕ
a [!ϕ]θ) ,

which generalizes the Announcement-Knowledge Axiom from Section 5.1 to the
case of beliefs. There also exists a more general reduction law for conditional belief.
2. Public Announcements of Soft Facts: The “Lexicographic Upgrade”
To allow for soft belief revision, an operation ⇑ ϕ was introduced in [van Benthem,

12This is called the “preference modality” by van Benthem and Liu [2004].
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2006], essentially adapting to public announcements the ‘lexicographic’ policy for
belief revision described in [Rott, 2004]. This operation, called lexicographic update
consists of changing the current plausibility order on any given state model as
follows: all ϕ-worlds become more plausible than all ¬ϕ-worlds, and within the two
zones, the old ordering remains. Following what we did at the end of Section 4.9
and in Example 10 in Section 5.1, we are using the PDL relation transformer

π(r) = (?ϕ;�; ?¬ϕ) ∪ (?¬ϕ; r; ?¬ϕ) ∪ (?ϕ; r; ?ϕ)

where � is the universal relation. As before, the accessibility relations Ra change
to [[π(r)]](Ra). The important new step in verifying that this does what we want
is

[[?ϕ;�; ?¬ϕ]] = {(w,w) : w ∈ [[ϕ]]}; {(u, v) : u, v ∈W}; {(w,w) : w ∈ [[¬ϕ]]}
= {(u, v) : u ∈ [[ϕ]] and v ∈ [[¬ϕ]]}.

The corresponding Reduction Axiom for belief is

[⇑ ϕ]Baθ ↔ (K̂aϕ ∧Bϕ
a [⇑ ϕ]θ) ∨ (¬K̂aϕ ∧Ba[⇑ ϕ]θ)

where again K̂ is the “epistemic possibility” operator (the ♦-like dual of the K
operator). As in the case of hard announcements, there also exists a more general
reduction law for conditional belief.
3. Public Announcements of Soft Facts: The Conservative Upgrade.
The operation ↑ ϕ of conservative upgrade, as defined in [van Benthem, 2006],
changes any model as follows: the best ϕ-worlds come on top (i.e., the most plau-
sible ϕ-states become the most plausible overall), and apart from that, the old
order remains. The reduction law for belief is the same as in the previous case.
The difference can be only be seen by looking at the reduction law for conditional
belief. See [van Benthem, 2006] for details.

7.3 Logics for doxastic actions: the action-priority update

The work of Aucher [2005a; 2005b], Baltag and Smets [2006b; 2006c; 2007b], and
van Ditmarsch and Labuschagne [2003; 2005; 2007] can be considered as an at-
tempt to extend to dynamic belief revision the unified DEL setting based on action
models. We focus on the approach by Baltag and Smets and specifically on their
‘action-priority update’. This gives currently the most convincing picture given
the relational approach. It also goes some way towards addressing the problem
of the multiplicity of belief revision policies: as we will see below, the action-
priority update unifies and subsumes many different policies and types of revision,
which come to be seen as the result of applying the same update operation to
different triggers given by specific learning events. Indeed, in this interpretation,
the triggering events for belief revision are doxastic actions, modeled using action
plausibility models, in a similar way to the way epistemic actions were modeled us-
ing epistemic action models. The actions’ “preconditions” encode the information
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carried by each action. The plausibility relations between actions are meant to
represent the agent’s (conditional) beliefs about the learning event at the moment
of its happening.

We assume here the setting of plausibility models and the conditional doxastic
logic CDL from Section 4.7. The following definition gives the natural plausibility
analogue of the action models from Section 5.4, by incorporating the main intuition
underlying the AGM belief revision: that new information has priority over old
beliefs .

DEFINITION 24 (Action plausibility model). (Aucher) Let L be a logical lan-
guage which extends the language of CDL. An action plausibility model over L is
a structure U = 〈S,≤, pre〉 such that 〈S,≤〉 is a plausibility frame and pre : S → L
is a precondition function that assigns a precondition pre(α) ∈ L to each α ∈ S.
As in Section 5.4, the elements of S are called action points, and for each a ∈ A,
≤a is a plausibility relation on S. For α, β ∈ S, we read α ≤a β as follows: agent
a considers action α as being at least as plausible as action β. A doxastic action
is a pointed action plausibility model (U, α), with α ∈ S.

EXAMPLE 25. The truthful public announcement of a hard fact ϕ is modeled by a
singleton action model consisting of an action point α, with identity as the plausi-
bility relation for every agent, and with precondition pre(α) = ϕ. As in Section 5.4,
we call this action model Pub ϕ, and denote by ! ϕ the action corresponding to
the point α.13

Fully private announcements and fair-game announcements can be similarly
modeled, essentially by reading the arrows in their epistemic action models from
Section 5.4 as plausibility arrows.

Announcements of Soft Information. We can simulate public announcements
of soft facts, as described in the previous section, using action plausibility models.
For instance, the lexicographic update ⇑ ϕ has the following action model:

�

�

�

�αa∈A ��
�� a∈A

�

�

�

�
β a∈A��

with pre(α) = ϕ and pre(β) = ¬ϕ. The action point on the left corresponds
to the case that the announcement happens true; the action point on the right
corresponds to the case that the announcement is false.

The conservative upgrade ↑ ϕ can be similarly encoded, using a more compli-
cated action model.

Successful Lying. The action of an agent b’s “lying in a publically successful
manner” by can be modeled as follows: given a sentence ϕ, the model consists of
two action points α and β, the first being the action in which agent b publicly lies
that (he knows that) ϕ (while in fact he doesn’t know it), and the second being

13Technically, we should distinguish between this plausibility model and the corresponding
action model in Section 5.4, but we choose to use the same notation, relying on the context for
deciding when to interpret it as a plausibility model. The same applies to all the other plausibility
action models in this section having the same notation as an epistemic model.
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the action in which b makes a truthful public announcement that (he knows that)
ϕ. The preconditions are pre(α) = ¬Kbϕ and pre(β) = Kbϕ. Agent b’s plausibility
relation is simply the identity: she knows whether she’s lying or not. The relation
for any hearer c 	= b should make it more plausible to him that b is telling the truth
rather than lying: α <c β. This reflects the fact that we are modeling “typically
successful lying”: by default, in such an action, the hearer trusts the speaker, so
he is inclined to believe the lie.

�

�

�

�αb ��
c �=b ��

�

�

�

�
β a∈A��

We call this model Lieb ϕ, and also denote the action corresponding to the point
α by Lieb ϕ, and the action corresponding to the point β by Trueb ϕ.

DEFINITION 26 (Execution, Action-Priority Update). Given a doxastic state
(M, s) with M = (S,≤, V ), and a doxastic action (U, α) with U = (S,≤, pre), the
result of executing (U, α) in (M, s) is only defined when M, s |= pre(α). In this
case, it is the doxastic state (M ⊗≤ U), (s, α)) where M ⊗≤ U = 〈S′,≤′, V ′〉 is a
restricted anti-lexicographic product of the structures M and U, defined by

S′ ≡ {(s, α) | s ∈ S, α ∈ S, and M, s |= pre(α)}
(s, α) ≤′

a (t, β) iff α <a β and s∼a t ; or else α ∼=a β and s ≤a t
(s, α) ∈ V ′

p iff s ∈ Vp

where ∼a is the epistemic indifference (uncertainty) relation14 on states, and ∼=a

is the equi-plausibility relation on actions (defined by α ∼=a β iff both α ≤a β and
β ≤a α).

This is a generalization of one of the belief-revision policies encountered in the
literature (essentially incorporating the so-called “maximal-Spohn revision” into
plausibility action models), as well as being a natural plausibility analogue of the
product update from Section 5.4. The new order is simply the anti-lexicographic
order on (epistemically indistinguishable) pairs. The name comes from [Baltag and
Smets, 2006b; Baltag and Smets, 2006c; Baltag and Smets, 2007b]. Van Benthem
calls it “Action Priority Update”: indeed, this construction gives priority to the
action plausibility relation. This is not an arbitrary choice, but is motivated by a
specific interpretation of action models as encoding belief changes. In other words,
the (strict) order on actions encodes changes of order on states. The definition
of execution is a consequence of this interpretation: it just says that a strong
plausibility order α <a β on actions corresponds indeed to a change of ordering,
(from whatever the ordering was) between the original (indistinguishable) input-
states s∼a t, to the order (s, α) <a (t, β) between output-states; while equally
plausible actions α ∼=a β will leave the initial ordering unchanged: (s, α) ≤a (t, β)
iff s ≤a t. Giving priority to action plausibility does not in any way mean that the
agent’s belief in actions is stronger than her belief in states; it just captures the

14Recall that, in a plausibility model, the epistemic uncertainty relation is defined by: s∼a t iff
either s ≤a t or t ≤a s.
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fact that, at the time of updating with a given action, the belief about the action
is what is actual, it is the current belief about what is going on, while the beliefs
about the input-states are in the past.15

In a nutshell: the doxastic action is the one that changes the initial doxastic
state, and not vice-versa. The belief update induced by a given action is nothing
but an update with the (presently) believed action. If the believed action α requires
the agent to revise some past beliefs, then so be it: this is the whole point of
believing α, namely to use it to revise or update one’s past beliefs. For example,
in a successful lying, the action plausibility relation makes the hearer believe that
the speaker is telling the truth; so she’ll accept this message (unless contradicted
by her knowledge), and change her past beliefs appropriately: this is what makes
the lying successful.

EXAMPLE 27. Consider the situation in Section 2.3, in which Bao was told the
face of the coin, without Amina suspecting this. Assume moreover the coin lies
heads up. This was represented in Section 2.4 by the plausibility model (10):
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where the real state is the upper-left one.
Next, suppose Bao tells Amina: “I know the face of the coin”. Let us first

assume this is an evidently truthful statement, coming with a warranty of veracity
of some sort or other. Then Amina takes Bao’s statement as an announcement
of a hard fact. So this action is represented by Pub (KbH ∨KbT), with the one-
point action model described above (for truthful public announcements of hard
information); the action point will be called α. Execute now this doxastic action
on the doxastic state given by (upper-left point in) the model (10) above. We
identify the old states u and x with the pairs (u, α) and (x, α), respectively, and
then we picture the result as

�

�

�

�u:Ha,b 


�� a ��

�

�

�

�x:T a,b


which fits our intuition about the agent’s beliefs: it is now common knowledge
that Bao knows the face of the coin.

What if Bao’s announcement was not evidently truthful? Amina may still
believe it, but she doesn’t know that it is true. We model using an announcement
of a soft fact rather than a hard one, corresponding to the lexicographic upgrade

15Of course, at a later moment, the above-mentioned belief about action (now belonging to
the past) might be itself revised. But this is another, future update.
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⇑ (KbH ∨ KbT). Using the two-point action plausibility model for lexicographic
update which we saw above, and computing the execution of this doxastic action
on the original doxastic state given by model (10) above, we obtain:
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Here and just below, we are identifying the old states with certain pairs to simplify
the representation.

What if, instead of making a truthful announcement, Bao chooses to lie? For
instance (in the initial situation, after he was secretely told that the coin lies heads
up), suppose he tells Amina: “I know the coin is lying tails up”. This is a lie.
Let us assume it is a successful one, so that Amina trusts Bao completely and
therefore believes he is telling the truth. We can represent this action using, as
described above, the two-point action model Lieb (KbH) for successful lying. If we
now we execute this doxastic action on the original doxastic state from the model
(10) above, we obtain
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in which the upper left-hand state is the real one. Again, this fits our doxastic
intuitions: Amina is deceived and believes the upper right-hand state to be the real
one. However, this false belief is revisable: a new public announcement Pub KbH
(in effect, saying that Bao has lied and that in fact he knows the coin lies heads
up) would correct Amina’s wrong belief, making her know that the real state is
the left-hand one.

Action-Priority Update Generalizes Product Update Recall the defini-
tion of the epistemic indistinguishability relation ∼a in a plausibility model: s∼a t
iff either s ≤a t or t ≤a s. It follows that Action Priority Update implies the
Product Update rule from Section 5.4:

(s, α) ∼a (t, β) iff s∼a t and α∼a β.
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The logic of doxastic actions As in Section 5.5, we can consider a signature-
based language, where a doxastic signature is a finite (fixed) plausibility frame Σ,
together with an ordered list without repetitions (σ1, . . . , σn) of some of the ele-
ments of Σ. As in Section 5.5, each signature induces a syntactic action model,
and it gives rise to a dynamic-doxastic logic L(Σ). The language is obtained
by augmenting either the language of conditional doxastic logic CDL from Sec-
tion 4.7, or the language of the logic of knowledge and safe belief from Sec-
tion 4.8, with dynamic modalities for (signature-based) doxastic actions. The
semantics can be given in a similar way to the one in Section 5.5. We skip
here the details, referring to [Baltag and Smets, 2006b; Baltag and Smets, 2006c;
Baltag and Smets, 2007b]. Just as in DEL, and similarly to the approach in the
previous subsection, one can automatically read off a set of Reduction Axioms for
knowledge and safe belief, thus obtaining a complete proof system. But Baltag
and Smets also derive in [Baltag and Smets, 2006c] general (though very complex)
Reduction laws for conditional belief.

The Action-Safe-Belief Axiom As for DEL, we only present here the most
important reduction axiom, namely the appropriate generalization of the Action-
Knowledge Axiom to the logic of doxastic actions. In fact, there are two such laws:
one for knowledge, the other for safe belief. But the reduction law for knowledge
is essentially the same as the Action-Knowledge Axiom in Section 5.5. So we only
state here an “Action-Safe-Belief Axiom”, saying that, for every basic action α,
we have:

[α]�aϕ↔
(

pre(α) →
∧

α′<aα

Ka[α′]ϕ ∧
∧

α′′∼=aα

�a[α′′]ϕ

)

where <a is the strict plausibility order on (syntactic) actions (in the action model
induced by the signature) and similarly ∼=a is the equi-plausibility relation on (syn-
tactic) actions.

This axiom could be thought of as the “fundamental law of dynamic belief
revision”: it allows us to compute or predict safe beliefs after a learning event
in terms of knowledge and safe beliefs before the event. In plain words, it says
that: a sentence ϕ will be safely believed after a doxastic event iff, whenever the
action can take place, it is known that ϕ will become true after all more plausible
events and at the same time it is safely believed that ϕ will become true after all
equi-plausible events.

Unifying Diverse Belief-Revision Policies As seen in the examples above,
the Action-Priority Update can simulate the various belief revision policies con-
sidered in the previous section. More generally, the power of the action model
approach is reflected in the fact that many different revision policies can be re-
covered, in a uniform manner, as instances of the same type of update operation.
In this sense, the DEL approach can be seen as a change of perspective: the
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multiplicity of possible revision policies considered in the Belief Revision litera-
ture is replaced by the multiplicity of possible action models; the differences are
now viewed as differences in input, rather than having different programs. For a
computer scientist, this resembles currying in the lambda-calculus: if every “op-
eration” is encoded as an input-term, then one operation (functional application)
can simulate all operations.16 In a sense, this is nothing but the idea of Turing’s
universal machine, from the theory of computation. Note that, by incorporating
the Product Update from Section 5.4, the Action-Priority Update gains all its
dynamic features and its advantages: in addition to simulating a range of individ-
ual belief-revision policies, it can deal with an even wider range of complex types
of multi-agent learning and communication actions. It may thus be realistic to
expect that, within its own natural limits, Action Priority Update could play the
role of a “universal qualitative machine” for dynamic interactive belief-revision.
The problem of finding these natural limits remains open.

Notes The action plausibility models were first introduced by Aucher [2005a;
2005b], as an adaptation of the DEL framework of Baltag, Solecki and Moss to
the case of dynamic belief revision. Aucher used an equivalent definition, inspired
from the work of Spohn [1988], describing plausibility models in terms of ordinal
plausibility functions, interpreted as “degrees of belief”. This lead Aucher, and
then van Ditmarsch and Labuschagne [van Ditmarsch and Labuschagne, 2003;
van Ditmarsch, 2005; van Ditmarsch and Labuschagne, 2007], to propose and
study various types of product update, of a different, more “quantitative” flavor
than the Action-Priority update presented above; these proposals are based on
using various binary operations on ordinals to compute the degree of belief of an
updated state in terms of the corresponding degrees of belief of the input-state
and of the action. None of these specific proposals seem to correspond to the
Action-Priority update (although it is easy to see that this type of update can
be computed via a special ordinal function, so in a sense it is subsumed by the
general “quantitative” approach). Aucher introduced a doxastic logic, with op-
erators Bn

aϕ for each ordinal degree of belief n, and completely axiomatized the
dynamic logic corresponding to his proposal of product update. This work was
generalized by van Ditmarsch [2005], who also gave a good presentation of the
various proposals in the literature, as well as of the various problems encountered.
A recent breakthrough in the field was the work of van Benthem [2006] on the
relational approach to belief “upgrades”, partially based on previous work by van
Benthem and Liu [2004] on preference upgrades. At the same time, Baltag and
Smets [2006a; 2006b; 2006c; 2007b] developed their own relational approach to
dynamic belief revision, introducing the Action-Priority Update and the Action-
Safe-Belief Axiom. Both van Benthem, and Baltag and Smets, used a qualitative

16Note that, as in untyped lambda-calculus, the input-term encoding the operation (i.e, the
action model) and the static input-term to be operated upon (the state mode) are essentially
of the same type: epistemic plausibility models for the same language (and for the same set of
agents).
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logical language (either based on conditional belief operators, or on knowledge
and safe belief operators) rather than one based on degrees of belief. Baltag and
Sadrzadeh [2006] gave an algebraic axiomatization of a type of dynamic belief re-
vision. In more recent work (still to appear), Baltag and Smets [2007a] develop
a probabilistic version of dynamic belief revision, based on combining their pre-
vious work on safe belief and the Action-Priority update with the work of van
Fraasen [1995], Boutilier [1995] and Parikh [2005] on using Popper’s counterfac-
tual probability functions to deal with belief revision.

8 CONCLUSION

As we end this chapter, we step back to try to understand what makes this par-
ticular subject of epistemic logic and information update what it is. We especially
want to compare what is going on here to what is discussed in other chapters,
especially Chapters 4c and 3b.

In a sense, our treatment of epistemic phenomena is ultra-semantic. Beginning
in Section 2, we depicted representations and treated them as abstract semantic
objects. Even before this, we stated openly that our modeling was slanted towards
justifiable belief. This stance implicitly allowed us to ignore reasons to believe and
instead focus on models of the phenomena of interest. All throughout our section
on examples, we emphasized that one must test models and semantic definitions
against intuitions, that the proof of the pudding is in the eating. Indeed, our sub-
ject is not a single pudding at all but rather a whole buffet of delectable semantic
desserts. We also made it clear that the chefs used an artificial sweetener, rela-
tional models, and so those allergic to logical omniscience might prefer the fresh
fruit. But except for this, the models work extremely well: the predictions of the
logical languages match the intuitions. And one can use the formal tools as a real
aid in building representations.

At the same time, our work is unexpectedly syntactic. We saw a series of logical
languages crafted to exploit the key semantic features of the models. Whenever
one hears about “encoding” in this subject, it is this: the semantic objects quickly
become the sites for semantic evaluation in languages which are richer than one
might have at first expected. The easiest example is the relational (Kripke) se-
mantics itself. Having a set of Carnapian state descriptions living alone is at this
time fairly mundane. Even adding one or more accessibility relation and calling
things “possible worlds” does not go far in relating the worlds to one another. But
once one has languages with modal operators, statements evaluated at one world
in general must refer to other worlds. Thus the worlds really are related: since
the logical language has iterated modal sentences, what is true here is in general
influenced by what is true far away.

The models in this chapter also incorporate dynamics, social features such as
common knowledge, and conditional operators. In each case, the languages are
taken to be immediately higher-order: we have knowledge about knowledge, belief
about beliefs, announcements about announcements, etc. What makes the subject
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work is that the formal semantics of the languages refer to the structure of the
models, and at the same time the intuitive concepts of interest correspond most
closely to statements in the formal languages. One aspect of our work which
might be unexpected is the emphasis on particular logical systems for specialized
phenomena. We presented a logic of public announcements in Section 5, but this is
just the tip of the iceberg. One can formulate specialized logics for other epistemic
actions. The point again is that we have semantic objects corresponding to these
actions (this seems to be an innovation coming from this subject) and then the
resulting logical systems take on an interest of their own, qua syntactic systems.
And on the opposite pole from the specialized logics are the very general ones
which incorporate arbitrary actions in some sense: these logical languages are
unexpectedly syntactic in the sense that their very formulation is trickier than
usual, as is their semantics. But the arrows inside of relational models are the
same kind of thing as the arrows between the models, and this is why dynamic
epistemic logic works.

One should compare the situation with the belief revision literature surveyed
in Chapter 4c. The AGM postulates deal with several operations, most notably
revision. These came first, and then later people were concerned with concrete
models of them, with representations of theory-change operations, and the like.
There is much less of an emphasis on matching the predictions of models to in-
tuitions, mainly because the intuitions are often not as clear, and also because
notions like a theory change operation are more abstract than a completely private
announcement in our sense. It also took longer for the matter of iterated revision
to become central. So the subject developed in a different way from ours. At the
same time, there are interesting similarities: as Table 1 in Chapter 4c shows, the
history of work in belief revision might be organized according to the particular
kinds of prior and posterior belief states discussed. In our subject, the parallel
is the extension of the ideas from “hard” semantic updates to “soft” ones (in the
terminology of Chapter 3b). Belief revision theory is a much more active field than
dynamic epistemic logic, and so one would expect to see a further push towards
varied semantic models. But overall, these parallels could be taken to indicate
hidden traces of functionalism in what we are doing, though clearly the emphasis
on models and languages here is the most prominent difference.

All of this could be said about other closely related topics, especially work on
history-based epistemic systems, interpreted systems, and related models which
we surveyed in our temporal reasoning Section 6.

Another difference between the main thrust of belief revision work and recent
trends in epistemic logic is the “social” aspect of the latter area. This is not true
of the earliest work in the subject, partly because philosophers have tended to look
only at public information. But as one can see from our chapter, the subject is
now about public and private types of information change: how they compare and
contrast, and how they are integrated in larger theories. This is clearly of interest
in mathematical areas of the social sciences, but we feel it is also of interest to
philosophy. To be a person is to relate to others, and so to understand knowledge
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we should pay special attention to multi-agent phenomena.
What connects the ultra-semantic and unexpectedly syntactic are the results on

the logical systems themselves. Details of representations often conceal significant
conceptual decisions, and results on logical languages and systems can help in the
evaluation of different representations. By formulating sound principles, one un-
covers (or highlights) hidden assumptions. The matching completeness theorems
indicate the right kind of “harmony” (see Chapter 3b). Even more indicative is the
fact that those logical systems typically have axiomatic presentations that make
intuitive sense. There is no mathematical reason why the axioms behind logical
systems should in any way be “nice.” Frequently they are not. But we would
like to regard the happy coincidences of axioms and intuitions in our subject as
signposts which indicate that we are on the right track and point the way ahead.

ACKNOWLEDGMENTS

We thank Anthony Gillies and Joshua Sack for their very useful comments on this
chapter at various stages.

BIBLIOGRAPHY

[Alchourrón et al., 1985] C.E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of
theory change: partial meet contraction and revision functions. Journal of Symbolic Logic,
50:510–530, 1985.

[Arlo-Costa and Parikh, 2005] H. Arlo-Costa and R. Parikh. Conditional probability and de-
feasible inference. Journal of Philosophical Logic, 34:97–119, 2005.

[Artemov, 2004] S. Artemov. Evidence-based common knowledge. Technical report, CUNY,
2004. Ph.D. Program in Computer Science Technical Report TR-2004018.

[Aucher, 2005a] G. Aucher. A combined system for update logic and belief revision. In M.W.
Barley and N. Kasabov, editors, Intelligent Agents and Multi-Agent Systems – 7th Pacific
Rim International Workshop on Multi-Agents (PRIMA 2004), pages 1–17. Springer, 2005.
LNAI 3371.

[Aucher, 2005b] G. Aucher. How our beliefs contribute to interpret actions. In M. Pechoucek,
P. Petta, and L.Z. Varga, editors, Proceedings of CEEMAS 2005: Multi-Agent Systems and
Applications IV, volume 3690 of Lecture Notes in Computer Science, pages 276–285. Springer,
2005.

[Aumann, 1976] R.J. Aumann. Agreeing to disagree. Annals of Statistics, 4(6):1236–1239, 1976.
[Balbiani et al., 2007] P. Balbiani, A. Baltag, H.P. van Ditmarsch, A. Herzig, T. Hoshi, and

T. De Lima. What can we achieve by arbitrary announcements? A dynamic take on Fitch’s
knowability. To appear in the proceedings of TARK XI, 2007.

[Baltag and Moss, 2004] A. Baltag and L.S. Moss. Logics for epistemic programs. Synthese,
139:165–224, 2004. Knowledge, Rationality & Action 1–60.

[Baltag and Sadrzadeh, 2006] A. Baltag and M. Sadrzadeh. The algebra of multi-agent dynamic
belief revision. Electronic Notes in Theoretical Computer Science, 157(4):37–56, 2006.

[Baltag and Smets, 2006a] A. Baltag and S. Smets. Conditional doxastic models: a qualitative
approach to dynamic belief revision. In Proceedings of WOLLIC’06, Electronic Notes in
Theoretical Computer Science, 2006.

[Baltag and Smets, 2006b] A. Baltag and S. Smets. Dynamic belief revision over multi-agent
plausibility models. Proceedings of LOFT 2006 (7th Conference on Logic and the Foundations
of Game and Decision Theory), 2006.



Epistemic Logic and Information Update 91

[Baltag and Smets, 2006c] A. Baltag and S. Smets. The logic of conditional doxastic actions: a
theory of dynamic multi-agent belief revision. Proceedings of ESSLLI Workshop on Rational-
ity and Knowledge, 2006.

[Baltag and Smets, 2007a] A. Baltag and S. Smets. From conditional probability to the logic of
belief-revising actions. To appear in the proceedings of TARK IX, 2007.

[Baltag and Smets, 2007b] A. Baltag and S. Smets. A qualitative theory of dynamic interactive
belief revision. To appear in G. Bonanno, W. van der Hoek, M. Wooldridge (eds). Selected
Papers from LOFT’06, Texts In Logic and Games, Amsterdam University Press, 2007.

[Baltag et al., 1998] A. Baltag, L.S. Moss, and S. Solecki. The logic of common knowledge,
public announcements, and private suspicions. In I. Gilboa, editor, Proceedings of the 7th
Conference on Theoretical Aspects of Rationality and Knowledge (TARK 98), pages 43–56,
1998.

[Baltag et al., 1999] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announcements,
common knowledge, and private suspicions. Technical report, Centrum voor Wiskunde en
Informatica, Amsterdam, 1999. CWI Report SEN-R9922.

[Baltag et al., 2005] A. Baltag, B. Coecke, and M. Sadrzadeh. Algebra and sequent calculus for
epistemic actions. Electronic Notes in Theoretical Computer Science, 126:27–52, 2005.

[Baltag et al., 2007, to appear] A. Baltag, B. Cooke, and M. Sadrzadeh. Epistemic actions as
resources. Journal of Logic and Computation, 2007, to appear. Also in LiCS 2004 Proceedings
of Logics for Resources, Programs, Processes (LRPP).

[Baltag, 2002] A. Baltag. A logic for suspicious players: epistemic actions and belief updates in
games. Bulletin Of Economic Research, 54(1):1–46, 2002.

[Blackburn et al., 2001] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, Cambridge, 2001. Cambridge Tracts in Theoretical Computer Science 53.

[Board, 2004] O. Board. Dynamic interactive epistemology. Games and Economic Behaviour,
49:49–80, 2004.

[Boutilier, 1995] C. Boutilier. On the revision of probabilistic belief states. Notre Dame Journal
of Formal Logic, 36(1):158–183, 1995.

[Brogaard and Salerno, 2004] B. Brogaard and J. Salerno. Fitch’s paradox of knowa-
bility. In E.N. Zalta, editor, The Stanford Encyclopedia of Philosophy. 2004.
http://plato.stanford.edu/archives/sum2004/entries/fitch-paradox/ .
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