Advanced Logic 2014-15

Dimitri Hendriks

VU University Amsterdam
Theoretical Computer Science

week 5

partial correctness statements

» Euclid’'s gcd program (for positive integers):

gcd = while x # y do {
if x>y
then x . =x —y

elsey =y —x};
return x;

» think of a state as a set of pairs x = t, one for each variable x

> an example gecd-run on start state {x =420,y = 96,...}:

(x,y) = (420,96) —>geq (12,12)

> correctness of the gcd-program can be expressed by the PDL formula

(x = u) Ay = v) = [ged](x = ged(u, v))

precondition postcondition

PDL: Propositional Dynamic Logic

» PDL is a formal system for reasoning about programs
> shares the goals of computer-assisted verification via model checking
and theorem proving:
» formalizing correctness specifications
> proving that a program meets its specification
> determining equivalence of programs
» comparing expressive power of program constructs
» PDL is (modal, and so) dynamic, to model computation:
> programs change values assigned to variables: x := x4+ 1
» and so change the truth of formulas: x is even
» PDL abstracts from details of program execution, programs are
interpreted as input—output relations
» PDL has explicit syntax for building regular programs out of atomic
ones: composition, choice, iteration, and test
> these program constructors are interpreted as operations on
input-output relations

PDL: Propositional Dynamic Logic

> to every program « we associate a modality ()

> (a)@: it is possible to execute program « starting from the current
state and halt in a state satisfying

> [a]p: if program « halts, it does so in a state satisfying ¢

PDL-programs and formulas

v

let A ={a,b,c,...} be aset of atomic programs

v

let VAR = {p, q,r,...} be a set of atomic propositions

v

the sets PROG and FORM of PDL-programs and PDL-formulas over
(A, VAR) are mutually defined by:

az=ala;alaUala”™|e? (ac A)
po=p|TIelene| (@) (p € VAR)

v

let * and 7 bind stronger than ; and ; stronger than U

v

sometimes we write a3 instead of a; 3

informal meaning of program constructions

a atomic programs
basic, indecomposable; execute in one single step
a; B sequential composition
do «, then do f3

a U B non-determinististic choice
choose a or 3, and execute it

o™ iteration
choose an integer n > 0, and execute o n times

p? test
if p then skip else abort
if © holds, it continues without changing state, if not it
blocks without halting

why allow non-determinism?

» non-determinism in PDL is due to the choice operator U and the
iterator construct (a* is iterating v a non-deterministically chosen
number of times)

> so in the programming language of PDL traces of a program need
not be uniquely determined by their start states

> ... not so realistic, why?

» non-determinism is a useful tool when modelling situations where we
cannot predict the outcome of a particular choice:
computations may depend on external info outside of the
programmer’s control (e.g. user input)

» often we use U and * to build programs that force deterministic
choice, like the standard constructs:

if pthenaelse 8 = (¢?;a)U(—¢?; P)
while p do a = (p?;a)*; —p?

some example PDL-formulas

> [aUflp
always if we execute . or 3, we arrive at a state where ¢ holds
> ((af)")¥
there is a sequence of alternating executions of o and 3 such that
we arrive at a state where 1) holds
> (o) Via;at)e
@ holds after a finite number (n > 0) of a-steps
if and only if
either ¢ holds here (n =10), or (when n =1+ n') we can do one
a-step and then n’ more a-steps to reach a state with ¢

semantics of PDL

» PDL-formulas are multi-modal formulas over PROG, and so have to
be interpreted in models over the index set PROG ...

» ... but arbitrary PROG-models don't do justice to the intended
meaning of the program constructions

» we formalize the intuitive meaning by posing conditions on the
transition relations !

preliminaries (1): identity, composition, union

» the identity relation Id is defined by

Id={(x,y) [x=y}

» the composition Ro S of relations R and S is defined by:

RoS={(x,z) | Jy.Rxy A Syz }

» the union RU S of relations R and S is defined by:

RUS ={(x,y) | Rxy vV Sxy}

preliminaries (2): reflexive-transitive closure

v

the n-fold composition R" of a relation R is defined by:

R =1d R =R"oR

v

the reflexive-transitive closure R* of R is defined by:

R*:URn

n>0

v

if x R* y, then, for some n > 0 and X, ..., x, we have

x=xRxxR---Rx,=y

» R™* is the smallest reflexive, transitive relation that contains R:

R* = ﬂ{R’ | R is reflexive and transitive, and R C R" }

PDL-frames

» a ProG-frame F = (W, {R, | « € PROG}) is a PDL-frame if:

Raﬁ = Ra o Rﬁ
R(,(Uﬁ =R, U Rﬁ
Ry = (Ra)*

for all a, B € ProOG

> hence, as soon as the interpretation of the atomic programs is fixed,
we know what the relations corresponding to all composed programs
are

PDL-models

a model M = (W, {R, | « € PrROG}, V) is a PDL-model if
(W,{R. | @ € PrROG}) is a PDL-frame, and

R@?:{(W,W)|M,W)=<p}

PDL-extension

let M = (W,{R,]|a€ A}, V) be an A-model.
the PDL-extension M of M is the PROG-model
M = (W,{R, | o € PROG}, V), where R, is inductively defined on the

structure of a:

~

=R,
Rug = Ry o Ry
AaUﬁ =R, U Aﬁ
Ry- = (Ra)*
Ry2 = {(x,x) | M,x F ¢}

so M\ is a PDL-model , for all A-models M

example 1

Ve M z
AT

1. Show M F (a*)[(aa)*]p A (a")[(23)*]p

example 1

M u
Y
3 a
a
Pl S\
s a t

2. let a = if p then aa else a

(a) does the formula («)p hold throughout M?
(b) and [a]p?

example 2: exam 2007 (ctd.)

r] o"
a b
c
c
[) o
u . w
a b
@ [X7%
M

(d) let M be the PDL-extension of M.

compute the transition relations ﬁa, ﬁg, ﬁ,y of M corresponding to
the PDL-programs «, (3, :

a = bca B=aUc v=p"

example 2

JAINN
N

(e) do we have M E [y]p ¢+ p ?

deriving the truth definition of (while ¢ do)

while ¢ do a = (¢7?;)" ; =p?

let M = (W,{R, | « € ProG}, V) be a PDL-model. then:

M, x E (while ¢ do)
if and only if
dn > 0. 3xg, . .., Xp. (onx
& Roxixit1 (0 < i< n)
& M,x; Ep (0<i<n)
& xn Ep A1)

PDL-formulas defining the class of PDL-frames

the following formulas are valid in all PDL-frames, and if they are valid in

a frame, the frame is a PDL-frame.

() (B)p

p =
p
p
g
lp <

B)p
a’)p

(
(

pAle™](p— [alp)

the last formula is called the induction axiom, direction < reads

if p is true initially, and if, after any number of iterations of «, the
truth of p is preserved by one more iteration of «, then p will be
true after any number of iterations of o

some relational algebra

some laws that can help you to determine relations corresponding to
PDL-programs

IdoR=R=Rold
Ro(SUT)=(RoS)U(RoT)
(SUT)oR=(SoR)U(ToR)

(R*)* = R*
(RUS) = (R" 0 S*)"

PDL’s program constructors are safe for bisimulation

> in order to verify whether two PDL-models are bisimilar ... do we
have to check bisimilarity of infinitely many relations 7

> no, it suffices to check bisimilarity of the relations interpreting the
atomic programs !

> an n-ary relational operator O is called safe for bisimulation if
E is a bisimulation for the relation O(Ry, ..., Ry)
whenever E is a bisimulation for the relations Ry, ..., R,

» PDL’s constructors are safe for bisimulation! hence we get:
ZMeM = Z:Meo M

> examples of operations not safe for bisimulation are converse _~1

and intersection N
» again: truth of PDL-formulas is preserved under bisimulations

example 3

o0

u b

‘a@@

ME p e [(ab*a)]p

example 4
find a PDL formula which expresses the following property of a state in a

PDL-model:

p is alternately true and false along all execution paths of a
from the current state (starting with p true)

example 4

find a PDL formula which expresses the following property of a state in a
PDL-model:

p is alternately true and false along all execution paths of a
from the current state (starting with p true)

the following two formulas both express this property (and are equivalent
in all PDL-frames):

pAla*l((p— [al=p) A (=p — [a]p))
[(aa)"]p A [a(aa)"]=p

example 4

find a PDL formula which expresses the following property of a state in a
PDL-model:

p is alternately true and false along all execution paths of a
from the current state (starting with p true)

the following two formulas both express this property (and are equivalent
in all PDL-frames):

pAla*l((p— [al=p) A (=p — [a]p))
[(aa)"]p A [a(aa)"]=p

a formula that characterizes the property p is alternately true and false
along all execution paths of a is

(p— [al=p) A (=p — [a]p)

example 5

which of the two directions

[(aUB)p < [lp A [B"]P

is valid in PDL?

example 6

which property is expressed by the formula (valid in all PDL-frames!):

(while pdo a)T « {(a™)—-p 7

example 6

which property is expressed by the formula (valid in all PDL-frames!):

(while pdo a)T « {(a™)—-p 7

this says that while p do « terminates if and only if it is possible, by
repeated executions of «;, to reach a state where —p holds.

example 7

yet another PDL-validity:

[Bla < (=pAq)V(pAlaplq)

where 5 = while p do «.

example 8

[if pthen aelse Blg + (pAlalq) VvV (=p A[Blq)

valid in all PDL-frames

