Advanced Logic 2014–15

Dimitri Hendriks

VU University Amsterdam Theoretical Computer Science

week 5

partial correctness statements

Euclid's gcd program (for positive integers):

```
gcd = while x \neq y \text{ do } \{ \\ if x > y \\ then x := x - y \\ else y := y - x \};
return x;
```

- think of a state as a set of pairs x = t, one for each variable x
- an example gcd-run on start state $\{x = 420, y = 96, \ldots\}$:

$$(x, y) = (420, 96) \rightarrow_{\sf gcd} (12, 12)$$

correctness of the gcd-program can be expressed by the PDL formula

$$\underbrace{(x = u) \land (y = v)}_{\text{precondition}} \rightarrow [\text{gcd}](\underbrace{x = gcd(u, v)}_{\text{postcondition}})$$

PDL: Propositional Dynamic Logic

- PDL is a formal system for reasoning about programs
- shares the goals of computer-assisted verification via model checking and theorem proving:
 - formalizing correctness specifications
 - proving that a program meets its specification
 - determining equivalence of programs
 - comparing expressive power of program constructs
- ▶ PDL is (modal, and so) dynamic, to model computation:
 - programs change values assigned to variables: x := x + 1
 - and so change the truth of formulas: x is even
- PDL abstracts from details of program execution, programs are interpreted as input-output relations
- PDL has explicit syntax for building regular programs out of atomic ones: composition, choice, iteration, and test
- these program constructors are interpreted as operations on input-output relations

PDL: Propositional Dynamic Logic

- to every program α we associate a modality $\langle \alpha \rangle$
- (α)φ: it is possible to execute program α starting from the current state and halt in a state satisfying φ
- $[\alpha]\varphi$: if program α halts, it does so in a state satisfying φ

PDL-programs and formulas

- let $A = \{a, b, c, \ldots\}$ be a set of atomic programs
- let $VAR = \{p, q, r, ...\}$ be a set of atomic propositions
- the sets PROG and FORM of PDL-programs and PDL-formulas over (A, VAR) are mutually defined by:

$$\begin{aligned} \alpha &::= \mathbf{a} \mid \alpha; \alpha \mid \alpha \cup \alpha \mid \alpha^* \mid \varphi? & (\mathbf{a} \in \mathbf{A}) \\ \varphi &::= \mathbf{p} \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \alpha \rangle \varphi & (\mathbf{p} \in \mathbf{VAR}) \end{aligned}$$

- \blacktriangleright let * and ? bind stronger than ; and ; stronger than \cup
- sometimes we write $\alpha\beta$ instead of α ; β

informal meaning of program constructions

a atomic programs

basic, indecomposable; execute in one single step

 α ; β sequential composition do α , then do β

$\alpha \cup \beta$ non-determinististic choice

choose α or β , and execute it

 α^{\ast} iteration

choose an integer $n \ge 0$, and execute α n times

 φ ? test

if arphi then skip else abort

if φ holds, it continues without changing state, if not it blocks without halting

why allow non-determinism?

- ► non-determinism in PDL is due to the choice operator ∪ and the iterator construct (α* is iterating α a non-deterministically chosen number of times)
- so in the programming language of PDL traces of a program need not be uniquely determined by their start states
- ... not so realistic, why?
- non-determinism is a useful tool when modelling situations where we cannot predict the outcome of a particular choice: computations may depend on external info outside of the programmer's control (e.g. user input)
- ▶ often we use ∪ and * to build programs that force deterministic choice, like the standard constructs:

if φ then α else $\beta = (\varphi?; \alpha) \cup (\neg \varphi?; \beta)$ while φ do $\alpha = (\varphi?; \alpha)^*; \neg \varphi?$

$\blacktriangleright \ [\alpha \cup \beta] \varphi$

always if we execute α or β , we arrive at a state where φ holds

• $\langle (\alpha\beta)^* \rangle \psi$

there is a sequence of alternating executions of α and β such that we arrive at a state where ψ holds

$\blacktriangleright \ \langle \alpha^* \rangle \varphi \leftrightarrow \varphi \vee \langle \alpha \ ; \ \alpha^* \rangle \varphi$

 φ holds after a finite number $(n \ge 0)$ of α -steps if and only if either φ holds here (n = 0), or (when n = 1 + n') we can do one α -step and then n' more α -steps to reach a state with φ

- ► PDL-formulas are multi-modal formulas over PROG, and so have to be interpreted in models over the index set PROG ...
- ... but arbitrary PROG-models don't do justice to the intended meaning of the program constructions
- we formalize the intuitive meaning by posing conditions on the transition relations !

preliminaries (1): identity, composition, union

 \blacktriangleright the identity relation ${\rm Id}$ is defined by

 $\mathrm{Id} = \{(x, y) \mid x = y\}$

• the composition $R \circ S$ of relations R and S is defined by:

 $R \circ S = \{ (x, z) \mid \exists y. Rxy \land Syz \}$

• the union $R \cup S$ of relations R and S is defined by:

 $R \cup S = \{(x, y) \mid Rxy \lor Sxy\}$

preliminaries (2): reflexive-transitive closure

• the *n*-fold composition R^n of a relation R is defined by:

$$R^0 = \mathrm{Id} \qquad \qquad R^{n+1} = R^n \circ R$$

• the reflexive-transitive closure R^* of R is defined by:

$$R^* = \bigcup_{n \ge 0} R^n$$

• if $x R^* y$, then, for some $n \ge 0$ and x_0, \ldots, x_n we have

$$x = x_0 R x_1 R \cdots R x_n = y$$

R* is the smallest reflexive, transitive relation that contains R:

 $R^* = \bigcap \{ R' \mid R' \text{ is reflexive and transitive, and } R \subseteq R' \}$

▶ a PROG-frame $\mathcal{F} = (W, \{R_\alpha \mid \alpha \in \text{PROG}\})$ is a PDL-frame if:

 $egin{aligned} R_{lphaeta} &= R_lpha \circ R_eta\ R_{lpha\cupeta} &= R_lpha \cup R_eta\ R_{lpha\cupeta} &= R_lpha \cup R_eta\ R_{lpha^*} &= (R_lpha)^* \end{aligned}$

for all $\alpha, \beta \in PROG$

 hence, as soon as the interpretation of the atomic programs is fixed, we know what the relations corresponding to all composed programs are a model $\mathcal{M} = (W, \{R_{\alpha} \mid \alpha \in \text{PROG}\}, V)$ is a PDL-model if $(W, \{R_{\alpha} \mid \alpha \in \text{PROG}\})$ is a PDL-frame, and

 $R_{\varphi?} = \{ (w, w) \mid \mathcal{M}, w \vDash \varphi \}$

PDL-extension

let $\mathcal{M} = (W, \{R_a \mid a \in A\}, V)$ be an A-model. the PDL-extension $\widehat{\mathcal{M}}$ of \mathcal{M} is the PROG-model $\widehat{\mathcal{M}} = (W, \{\widehat{R}_\alpha \mid \alpha \in \text{PROG}\}, V)$, where \widehat{R}_α is inductively defined on the structure of α :

$$\widehat{R}_{a} = R_{a}$$

$$\widehat{R}_{\alpha\beta} = \widehat{R}_{\alpha} \circ \widehat{R}_{\beta}$$

$$\widehat{R}_{\alpha\cup\beta} = \widehat{R}_{\alpha} \cup \widehat{R}_{\beta}$$

$$\widehat{R}_{\alpha^{*}} = (\widehat{R}_{\alpha})^{*}$$

$$\widehat{R}_{\varphi?} = \{(x, x) \mid \mathcal{M}, x \vDash \varphi\}$$

so $\widehat{\mathcal{M}}\,$ is a PDL-model , for all A-models $\mathcal{M}\,$

1. Show $\widehat{\mathcal{M}} \models \langle a^* \rangle [(aa)^*] p \land \langle a^* \rangle [(aa)^*] \neg p$

- 2. let $\alpha = if p$ then *aa* else *a*
 - (a) does the formula $\langle \alpha \rangle p$ hold throughout $\widehat{\mathcal{M}}$? (b) and $[\alpha]p$?

example 2: exam 2007 (ctd.)

(d) let $\widehat{\mathcal{M}}$ be the PDL-extension of \mathcal{M} .

compute the transition relations \widehat{R}_{α} , \widehat{R}_{β} , \widehat{R}_{γ} of $\widehat{\mathcal{M}}$ corresponding to the PDL-programs α , β , γ :

$$\alpha = bca$$
 $\beta = \alpha \cup c$ $\gamma = \beta^*$

 \mathcal{M}

(e) do we have $\widehat{\mathcal{M}} \models [\gamma] p \leftrightarrow p$?

deriving the truth definition of (while φ do α) ψ

while φ do $\alpha = (\varphi?; \alpha)^*; \neg \varphi?$

let $\mathcal{M} = (W, \{R_{\alpha} \mid \alpha \in PROG\}, V)$ be a PDL-model. then:

```
\mathcal{M}, x \models \langle \text{while } \varphi \text{ do } \alpha \rangle \psi
if and only if
\exists n \ge 0. \ \exists x_0, \dots, x_n. \ (x_0 = x\& R_\alpha x_i x_{i+1} \ (0 \le i < n)\& \ \mathcal{M}, x_i \models \varphi \ (0 \le i < n)\& x_n \models \neg \varphi \land \psi )
```

the following formulas are valid in all PDL-frames, and if they are valid in a frame, the frame is a PDL-frame.

the last formula is called the induction axiom, direction \leftarrow reads

if p is true initially, and if, after any number of iterations of α , the truth of p is preserved by one more iteration of α , then p will be true after any number of iterations of α

some laws that can help you to determine relations corresponding to PDL-programs

 $Id \circ R = R = R \circ Id$ $R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$ $(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$ $(R^*)^* = R^*$ $(R \cup S)^* = (R^* \circ S^*)^*$

PDL's program constructors are safe for bisimulation

- in order to verify whether two PDL-models are bisimilar ... do we have to check bisimilarity of infinitely many relations ?
- no, it suffices to check bisimilarity of the relations interpreting the atomic programs !
- an *n*-ary relational operator O is called safe for bisimulation if E is a bisimulation for the relation $O(R_1, \ldots, R_n)$ whenever E is a bisimulation for the relations R_1, \ldots, R_n
- > PDL's constructors are safe for bisimulation! hence we get:

$$Z: \mathcal{M} \, \stackrel{}{\leftrightarrow} \, \mathcal{M}' \; \implies \; Z: \widehat{\mathcal{M}} \; \stackrel{}{\leftrightarrow} \; \widehat{\mathcal{M}'}$$

- ► examples of operations not safe for bisimulation are converse _⁻¹ and intersection ∩
- ▶ again: truth of PDL-formulas is preserved under bisimulations

 $\widehat{\mathcal{M}}\vDash p\leftrightarrow [(ab^*a)^*]p$

find a PDL formula which expresses the following property of a state in a PDL-model:

p is alternately true and false along all execution paths of a from the current state (starting with *p* true)

find a PDL formula which expresses the following property of a state in a PDL-model:

p is alternately true and false along all execution paths of a from the current state (starting with *p* true)

the following two formulas both express this property (and are equivalent in all PDL-frames):

 $\begin{array}{l} p \wedge [a^*]((p \rightarrow [a] \neg p) \wedge (\neg p \rightarrow [a]p)) \\ [(aa)^*]p \wedge [a(aa)^*] \neg p \end{array}$

find a PDL formula which expresses the following property of a state in a PDL-model:

p is alternately true and false along all execution paths of a from the current state (starting with *p* true)

the following two formulas both express this property (and are equivalent in all PDL-frames):

$$p \wedge [a^*]((p
ightarrow [a]
ightarrow p) \wedge (
ightarrow p
ightarrow [a] p)) \ [(aa)^*] p \wedge [a(aa)^*]
ightarrow p$$

a formula that characterizes the property p is alternately true and false along all execution paths of a is

$$(p \rightarrow [a] \neg p) \land (\neg p \rightarrow [a]p)$$

which of the two directions

 $[(\alpha \cup \beta)^*] p \leftrightarrow [\alpha^*] p \wedge [\beta^*] p$

is valid in PDL?

which property is expressed by the formula (valid in all PDL-frames!):

 $\langle \mathsf{while} \ p \ \mathsf{do} \ \alpha \rangle \top \ \leftrightarrow \ \langle \alpha^* \rangle \neg p \quad ?$

which property is expressed by the formula (valid in all PDL-frames!):

$\langle \mathsf{while} \ p \ \mathsf{do} \ \alpha \rangle \top \ \leftrightarrow \ \langle \alpha^* \rangle \neg p \quad ?$

this says that while p do α terminates if and only if it is possible, by repeated executions of α , to reach a state where $\neg p$ holds.

yet another PDL-validity:

$$[\beta]q \; \leftrightarrow \; (\neg p \wedge q) \lor (p \wedge [\alpha \beta]q)$$

where $\beta =$ while $p \operatorname{do} \alpha$.

$[\text{if } p \text{ then } \alpha \text{ else } \beta]q \ \leftrightarrow \ (p \land [\alpha]q) \lor (\neg p \land [\beta]q)$

valid in all PDL-frames