
Advanced Logic 2014–15

Dimitri Hendriks

VU University Amsterdam
Theoretical Computer Science

week 5



partial correctness statements

I Euclid’s gcd program (for positive integers):

gcd = while x 6= y do {
if x > y

then x := x − y

else y := y − x };
return x ;

I think of a state as a set of pairs x = t, one for each variable x

I an example gcd-run on start state {x = 420, y = 96, . . .} :

(x , y) = (420, 96)→gcd (12, 12)

I correctness of the gcd-program can be expressed by the PDL formula

(x = u) ∧ (y = v)︸ ︷︷ ︸
precondition

→ [gcd](x = gcd(u, v)︸ ︷︷ ︸
postcondition

)



PDL: Propositional Dynamic Logic

I PDL is a formal system for reasoning about programs

I shares the goals of computer-assisted verification via model checking
and theorem proving:

I formalizing correctness specifications
I proving that a program meets its specification
I determining equivalence of programs
I comparing expressive power of program constructs

I PDL is (modal, and so) dynamic, to model computation:
I programs change values assigned to variables: x := x + 1
I and so change the truth of formulas: x is even

I PDL abstracts from details of program execution, programs are
interpreted as input–output relations

I PDL has explicit syntax for building regular programs out of atomic
ones: composition, choice, iteration, and test

I these program constructors are interpreted as operations on
input-output relations



PDL: Propositional Dynamic Logic

I to every program α we associate a modality 〈α〉
I 〈α〉ϕ : it is possible to execute program α starting from the current

state and halt in a state satisfying ϕ

I [α]ϕ : if program α halts, it does so in a state satisfying ϕ



PDL-programs and formulas

I let A = {a, b, c , . . .} be a set of atomic programs

I let Var = {p, q, r , . . .} be a set of atomic propositions

I the sets Prog and Form of PDL-programs and PDL-formulas over
(A,Var) are mutually defined by:

α ::= a | α ; α | α ∪ α | α∗ | ϕ? (a ∈ A)

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | 〈α〉ϕ (p ∈ Var)

I let ∗ and ? bind stronger than ; and ; stronger than ∪
I sometimes we write αβ instead of α ; β



informal meaning of program constructions

a atomic programs
basic, indecomposable; execute in one single step

α ; β sequential composition
do α, then do β

α ∪ β non-determinististic choice
choose α or β, and execute it

α∗ iteration
choose an integer n ≥ 0, and execute α n times

ϕ? test
if ϕ then skip else abort
if ϕ holds, it continues without changing state, if not it
blocks without halting



why allow non-determinism?

I non-determinism in PDL is due to the choice operator ∪ and the
iterator construct (α∗ is iterating α a non-deterministically chosen
number of times)

I so in the programming language of PDL traces of a program need
not be uniquely determined by their start states

I . . . not so realistic, why?

I non-determinism is a useful tool when modelling situations where we
cannot predict the outcome of a particular choice:
computations may depend on external info outside of the
programmer’s control (e.g. user input)

I often we use ∪ and ∗ to build programs that force deterministic
choice, like the standard constructs:

if ϕ then α else β = (ϕ? ; α) ∪ (¬ϕ? ; β)

while ϕ do α = (ϕ? ; α)∗ ; ¬ϕ?



some example PDL-formulas

I [α ∪ β]ϕ

always if we execute α or β, we arrive at a state where ϕ holds

I 〈(αβ)∗〉ψ
there is a sequence of alternating executions of α and β such that
we arrive at a state where ψ holds

I 〈α∗〉ϕ↔ ϕ ∨ 〈α ; α∗〉ϕ
ϕ holds after a finite number (n ≥ 0) of α-steps
if and only if
either ϕ holds here (n = 0), or (when n = 1 + n ′) we can do one
α-step and then n ′ more α-steps to reach a state with ϕ



semantics of PDL

I PDL-formulas are multi-modal formulas over Prog, and so have to
be interpreted in models over the index set Prog . . .

I . . . but arbitrary Prog-models don’t do justice to the intended
meaning of the program constructions

I we formalize the intuitive meaning by posing conditions on the
transition relations !



preliminaries (1): identity, composition, union

I the identity relation Id is defined by

Id = {(x , y) | x = y}

I the composition R ◦ S of relations R and S is defined by:

R ◦ S = { (x , z) | ∃ y .Rxy ∧ Syz }

I the union R ∪ S of relations R and S is defined by:

R ∪ S = {(x , y) | Rxy ∨ Sxy}



preliminaries (2): reflexive-transitive closure

I the n-fold composition Rn of a relation R is defined by:

R0 = Id Rn+1 = Rn ◦ R

I the reflexive-transitive closure R∗ of R is defined by:

R∗ =
⋃
n≥0

Rn

I if x R∗ y , then, for some n ≥ 0 and x0, . . . , xn we have

x = x0 R x1 R · · · R xn = y

I R∗ is the smallest reflexive, transitive relation that contains R :

R∗ =
⋂
{R ′ | R ′ is reflexive and transitive, and R ⊆ R ′ }



PDL-frames

I a Prog-frame F = (W , {Rα | α ∈ Prog}) is a PDL-frame if:

Rαβ = Rα ◦ Rβ

Rα∪β = Rα ∪ Rβ

Rα∗ = (Rα)∗

for all α, β ∈ Prog

I hence, as soon as the interpretation of the atomic programs is fixed,
we know what the relations corresponding to all composed programs
are



PDL-models

a model M = (W , {Rα | α ∈ Prog},V ) is a PDL-model if

(W , {Rα | α ∈ Prog}) is a PDL-frame, and

Rϕ? = { (w ,w) | M,w � ϕ }



PDL-extension

let M = (W , {Ra | a ∈ A},V ) be an A-model.

the PDL-extension M̂ of M is the Prog-model

M̂ = (W , {R̂α | α ∈ Prog},V ), where R̂α is inductively defined on the
structure of α:

R̂a = Ra

R̂αβ = R̂α ◦ R̂β

R̂α∪β = R̂α ∪ R̂β

R̂α∗ = (R̂α)∗

R̂ϕ? = {(x , x) | M, x � ϕ}

so M̂ is a PDL-model , for all A-models M



example 1

a

p

M

a
p

a

a

ts

u

1. Show M̂ � 〈a∗〉[(aa)∗]p ∧ 〈a∗〉[(aa)∗]¬p



example 1

a

p

M

a
p

a

a

ts

u

2. let α = if p then aa else a

(a) does the formula 〈α〉p hold throughout M̂ ?
(b) and [α]p ?



example 2: exam 2007 (ctd.)

M

v2

u

a

b

b

c
c

c

v1

p

p

w

a

(d) let M̂ be the PDL-extension of M.

compute the transition relations R̂α, R̂β , R̂γ of M̂ corresponding to
the PDL-programs α, β, γ:

α = bca β = α ∪ c γ = β∗



example 2

M

v2

u

a

b

b

c
c

c

v1

p

p

w

a

(e) do we have M̂ � [γ]p↔ p ?



deriving the truth definition of 〈while ϕ do α〉ψ

while ϕ do α = (ϕ? ; α)∗ ; ¬ϕ?

let M = (W , {Rα | α ∈ Prog},V ) be a PDL-model. then:

M, x � 〈while ϕ do α〉ψ

if and only if

∃n ≥ 0. ∃x0, . . . , xn.
(

x0 = x

& Rαxixi+1 (0 ≤ i < n)

&M, xi � ϕ (0 ≤ i < n)

& xn � ¬ϕ ∧ ψ )



PDL-formulas defining the class of PDL-frames

the following formulas are valid in all PDL-frames, and if they are valid in
a frame, the frame is a PDL-frame.

〈αβ〉p ↔ 〈α〉〈β〉p
〈α ∪ β〉p ↔ 〈α〉p ∨ 〈β〉p
〈α∗〉p ↔ p ∨ 〈α〉〈α∗〉p
〈p?〉q ↔ p ∧ q

[α∗]p ↔ p ∧ [α∗](p→ [α]p)

the last formula is called the induction axiom, direction ← reads

if p is true initially, and if, after any number of iterations of α, the
truth of p is preserved by one more iteration of α, then p will be
true after any number of iterations of α



some relational algebra

some laws that can help you to determine relations corresponding to
PDL-programs

Id ◦ R = R = R ◦ Id
R ◦ (S ∪ T ) = (R ◦ S) ∪ (R ◦ T )

(S ∪ T ) ◦ R = (S ◦ R) ∪ (T ◦ R)

(R∗)∗ = R∗

(R ∪ S)∗ = (R∗ ◦ S∗)∗



PDL’s program constructors are safe for bisimulation

I in order to verify whether two PDL-models are bisimilar . . . do we
have to check bisimilarity of infinitely many relations ?

I no, it suffices to check bisimilarity of the relations interpreting the
atomic programs !

I an n-ary relational operator O is called safe for bisimulation if
E is a bisimulation for the relation O(R1, . . . ,Rn)
whenever E is a bisimulation for the relations R1, . . . ,Rn

I PDL’s constructors are safe for bisimulation! hence we get:

Z :M ↔ M ′ =⇒ Z : M̂ ↔ M̂ ′

I examples of operations not safe for bisimulation are converse −1

and intersection ∩
I again: truth of PDL-formulas is preserved under bisimulations



example 3

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

p p

q

q

aa

b

b
M

s t

u v

M̂ � p↔ [(ab∗a)∗]p



example 4

find a PDL formula which expresses the following property of a state in a
PDL-model:

p is alternately true and false along all execution paths of a
from the current state (starting with p true)

the following two formulas both express this property (and are equivalent
in all PDL-frames):

p ∧ [a∗]((p→ [a]¬p) ∧ (¬p→ [a]p))

[(aa)∗]p ∧ [a(aa)∗]¬p

a formula that characterizes the property p is alternately true and false
along all execution paths of a is

(p→ [a]¬p) ∧ (¬p→ [a]p)



example 4

find a PDL formula which expresses the following property of a state in a
PDL-model:

p is alternately true and false along all execution paths of a
from the current state (starting with p true)

the following two formulas both express this property (and are equivalent
in all PDL-frames):

p ∧ [a∗]((p→ [a]¬p) ∧ (¬p→ [a]p))

[(aa)∗]p ∧ [a(aa)∗]¬p

a formula that characterizes the property p is alternately true and false
along all execution paths of a is

(p→ [a]¬p) ∧ (¬p→ [a]p)



example 4

find a PDL formula which expresses the following property of a state in a
PDL-model:

p is alternately true and false along all execution paths of a
from the current state (starting with p true)

the following two formulas both express this property (and are equivalent
in all PDL-frames):

p ∧ [a∗]((p→ [a]¬p) ∧ (¬p→ [a]p))

[(aa)∗]p ∧ [a(aa)∗]¬p

a formula that characterizes the property p is alternately true and false
along all execution paths of a is

(p→ [a]¬p) ∧ (¬p→ [a]p)



example 5

which of the two directions

[(α ∪ β)∗]p ↔ [α∗]p ∧ [β∗]p

is valid in PDL?



example 6

which property is expressed by the formula (valid in all PDL-frames!):

〈while p do α〉> ↔ 〈α∗〉¬p ?

this says that while p do α terminates if and only if it is possible, by
repeated executions of α, to reach a state where ¬p holds.



example 6

which property is expressed by the formula (valid in all PDL-frames!):

〈while p do α〉> ↔ 〈α∗〉¬p ?

this says that while p do α terminates if and only if it is possible, by
repeated executions of α, to reach a state where ¬p holds.



example 7

yet another PDL-validity:

[β]q ↔ (¬p ∧ q) ∨ (p ∧ [αβ]q)

where β = while p do α .



example 8

[if p then α else β]q ↔ (p ∧ [α]q) ∨ (¬p ∧ [β]q)

valid in all PDL-frames


