Slides thanks to

- Martin Henz Aquinas Hobor
- CS 3234: Logic and Formal Systems

・ロト ・日下・ ・ ヨト・

Notions of Truth

Motivation

Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

- Often, it is not enough to distinguish between "true" and "false".
- We need to consider modalities if truth, such as:
 - necessity
 - time
 - knowledge by an agent
- Modal logic constructs a framework using which modalities can be formalized and reasoning methods can be established.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Syntax of Basic Modal Logic

$$\phi \quad ::= \quad \top \mid \perp \mid p \mid (\neg \phi) \mid (\phi \land \phi)$$
$$\mid (\phi \lor \phi) \mid (\phi \to \phi)$$
$$\mid (\phi \leftrightarrow \phi)$$
$$\mid (\Box \phi) \mid (\Diamond \phi)$$

09—Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

æ.

Review of Modal Logic Some Modal Logics Natural Deduction in Modal Logic

Knowledge in Multi-Agent Systems

Kripke Models

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Definition

A model \mathcal{M} of propositional modal logic over a set of propositional atoms A is specified by three things:

A W of worlds;

09—Modal Logic II

・ロ・・ (日・・ (日・・ (日・)

王

Review of Modal Logic Some Modal Logics Natural Deduction in Modal Logic

Knowledge in Multi-Agent Systems

Kripke Models

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Definition

A model \mathcal{M} of propositional modal logic over a set of propositional atoms A is specified by three things:

A W of worlds;

2 a relation *R* on *W*, meaning $R \subseteq W \times W$, called the *accessibility relation*;

09—Modal Logic II

< ロ > < 回 > < 回 > < 回 > 、

르

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Kripke Models

Definition

A model \mathcal{M} of propositional modal logic over a set of propositional atoms A is specified by three things:

- A W of worlds;
- 2 a relation R on W, meaning $R \subseteq W \times W$, called the *accessibility relation*;
- **3** a function $L: W \to A \to \{T, F\}$, called *labeling function*.

09—Modal Logic II

(a)

르

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Example

- $W = \{x_1, x_2, x_3, x_4, x_5, x_6\}$
- $R = \{(x_1, x_2), (x_1, x_3), (x_2, x_2), (x_2, x_3), (x_3, x_2), (x_4, x_5), (x_5, x_4), (x_5, x_6)\}$
- $L = \{(x_1, \{q\}), (x_2, \{p, q\}), (x_3, \{p\}), (x_4, \{q\}), (x_5, \{\}), (x_6, \{p\})\}$

・ロト ・日 ・ ・ ヨ ・

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

When is a formula true in a possible world?

Definition

Let $\mathcal{M} = (W, R, L)$, $x \in W$, and ϕ a formula in basic modal logic. We define $x \Vdash \phi$ via structural induction:

- x ||- ⊤
- x ⊮ ⊥
- $x \Vdash p$ iff $p \in L(x)(p) = T$
- $\boldsymbol{x} \Vdash \neg \phi$ iff $\boldsymbol{x} \not\Vdash \phi$
- $x \Vdash \phi \land \psi$ iff $x \Vdash \phi$ and $x \Vdash \psi$
- $\mathbf{x} \Vdash \phi \lor \psi$ iff $\mathbf{x} \Vdash \phi$ or $\mathbf{x} \Vdash \psi$
- ...

09-Modal Logic II

・ロト ・日 ・ ・ ヨ ・

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

When is a formula true in a possible world?

Definition (continued)

Let $\mathcal{M} = (W, R, L)$, $x \in W$, and ϕ a formula in basic modal logic. We define $x \Vdash \phi$ via structural induction:

- ...
- $x \Vdash \phi \rightarrow \psi$ iff $x \Vdash \psi$, whenever $x \Vdash \phi$
- $x \Vdash \phi \leftrightarrow \psi$ iff $(x \Vdash \phi \text{ iff } x \Vdash \psi)$
- $x \Vdash \Box \phi$ iff for each $y \in W$ with R(x, y), we have $y \Vdash \phi$
- $x \Vdash \Diamond \phi$ iff there is a $y \in W$ such that R(x, y) and $y \Vdash \phi$.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Review of Modal Logic

Some Modal Logics Natural Deduction in Modal Logic Knowledge in Multi-Agent Systems Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Example

- $x_1 \Vdash q$
- $x_1 \Vdash \Diamond q, x_1 \nvDash \Box q$
- $x_5 \Vdash \Box p, x_5 \Vdash \Box q, x_5 \Vdash \Box p \lor \Box q, x_5 \Vdash \Box (p \lor q)$
- $x_6 \Vdash \Box \phi$ holds for all ϕ , but $x_6 \nvDash \Diamond \phi$

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

A Range of Modalities

In a particular context $\Box \phi$ could mean:

- It is necessarily true that ϕ
- It will always be true that ϕ
- It ought to be that ϕ
- Agent Q believes that ϕ
- Agent Q knows that ϕ
- After any execution of program P, ϕ holds.

Since $\Diamond \phi \equiv \neg \Box \neg \phi$, we can infer the meaning of \Diamond in each context.

イロト イヨト イヨト イヨト

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

A Range of Modalities

From the meaning of $\Box \phi$, we can conclude the meaning of $\Diamond \phi$, since $\Diamond \phi \equiv \neg \Box \neg \phi$:

$\Box \phi$	$\Diamond \phi$
It is necessarily true that ϕ	It is possibly true that ϕ
It will always be true that ϕ	Sometime in the future ϕ
It ought to be that ϕ	It is permitted to be that ϕ
Agent Q believes that ϕ	ϕ is consistent with Q's beliefs
Agent Q knows that ϕ	For all Q knows, ϕ
After any run of P , ϕ holds.	After some run of P, ϕ holds

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Formula Schemes that hold wrt some Modalities

		2		2¢~C	م _ا ھ	~		8 10	ND0		7 8 8
$\Box \phi$	$\bigcirc \phi$	D¢ ≻ ¢	00		$\bigcirc \phi$	70 70	2 Cra	7 PC	DN		
It is necessary that ϕ	\checkmark				\checkmark	×	\checkmark	×			
It will always be that ϕ	×	\checkmark	×	×	×	×	\checkmark	×			
It ought to be that ϕ	×	×	×		\checkmark	×	\checkmark	×			
Agent Q believes that ϕ	×	\checkmark		\checkmark	\checkmark	×	\checkmark	×			
Agent Q knows that ϕ	\checkmark	\checkmark			\checkmark	×	\checkmark	×			
After running P, ϕ	×	×	×	×	×	X ₹□		×=>	∢≣ →	ТĒ.	୬୯୯

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Modalities lead to Interpretations of R

$\Box \phi$	R(x,y)
It is necessarily true that ϕ	y is possible world according to info at x
It will always be true that ϕ	<i>y</i> is a future world of <i>x</i>
It ought to be that ϕ	y is an acceptable world according to the information at x
Agent Q believes that ϕ	<i>y</i> could be the actual world according to Q's beliefs at <i>x</i>
Agent Q knows that ϕ	<i>y</i> could be the actual world according to Q's knowledge at <i>x</i>
After any execution of P, ϕ holds	y is a possible resulting state after execution of P at x

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Possible Properties of R

- reflexive: for every $w \in W$, we have R(x, x).
- symmetric: for every $x, y \in W$, we have R(x, y) implies R(y, x).
- serial: for every x there is a y such that R(x, y).
- transitive: for every $x, y, z \in W$, we have R(x, y) and R(y, z) imply R(x, z).
- Euclidean: for every $x, y, z \in W$ with R(x, y) and R(x, z), we have R(y, z).
- functional: for each x there is a unique y such that R(x, y).
- linear: for every $x, y, z \in W$ with R(x, y) and R(x, z), we have R(y, z) or y = z or R(z, y).
- total: for every $x, y \in W$, we have R(x, y) and R(y, x).
- equivalence: reflexive, symmetric and transitive.

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Reflexivity and Transitivity

Theorem

The following statements are equivalent:

- R is reflexive;
- \mathcal{F} satisfies $\Box \phi \rightarrow \phi$;
- \mathcal{F} satisfies $\Box p \rightarrow p$;

Theorem

The following statements are equivalent:

- R is transitive;
- \mathcal{F} satisfies $\Box \phi \rightarrow \Box \Box \phi$;
- \mathcal{F} satisfies $\Box p \rightarrow \Box \Box p$;

(日)

Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Formula Schemes and Properties of R

name	formula scheme	property of R
Т	$\Box \phi \to \phi$	reflexive
В	$\phi \to \Box \Diamond \phi$	symmetric
D	$\Box \phi \to \Diamond \phi$	serial
4	$\Box \phi \to \Box \Box \phi$	transitive
5	$\Diamond \phi \to \Box \Diamond \phi$	Euclidean
	$\Box\phi\leftrightarrow\Diamond\phi$	functional
	$\Box(\phi \land \Box \phi \to \psi) \lor \Box(\psi \land \Box \psi \to \phi)$	linear

09—Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

王

K KT45 KT4

- Some Modal Logics
 K
 - KT45
 - KT4

3 Natural Deduction in Modal Logic

4 Knowledge in Multi-Agent Systems

09-Modal Logic II

(日)

크

K KT45 KT4

Which Formula Schemes to Choose?

Definition

Let \mathcal{L} be a set of formula schemes and $\Gamma \cup \{\psi\}$ a set of formulas of basic modal logic.

09-Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

K KT45 KT4

Which Formula Schemes to Choose?

Definition

Let \mathcal{L} be a set of formula schemes and $\Gamma \cup \{\psi\}$ a set of formulas of basic modal logic.

• A set of formula schemes is said to be *closed* iff it contains all substitution instances of its elements.

< □ > < □ > < □ > < □ > < □ > < □ >

K KT45 KT4

Which Formula Schemes to Choose?

Definition

Let \mathcal{L} be a set of formula schemes and $\Gamma \cup \{\psi\}$ a set of formulas of basic modal logic.

- A set of formula schemes is said to be *closed* iff it contains all substitution instances of its elements.
- Let \mathcal{L}_c be the smallest closed superset of \mathcal{L} .

< ロ > < 同 > < 回 > < 回 > .

르

K KT45 KT4

Which Formula Schemes to Choose?

Definition

Let \mathcal{L} be a set of formula schemes and $\Gamma \cup \{\psi\}$ a set of formulas of basic modal logic.

- A set of formula schemes is said to be *closed* iff it contains all substitution instances of its elements.
- Let \mathcal{L}_c be the smallest closed superset of \mathcal{L} .
- Γ entails ψ in \mathcal{L} iff $\Gamma \cup \mathcal{L}_c$ semantically entails ψ . We say $\Gamma \models_{\mathcal{L}} \psi$.

イロト イヨト イヨト イヨト

К КТ45 КТ4

Examples of Modal Logics: K

K is the weakest modal logic, $\mathcal{L} = \emptyset$.

09-Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

王

К **КТ45** КТ4

Examples of Modal Logics: KT45

 $\mathcal{L} = \{T, 4, 5\}$

K **KT45** KT4

Examples of Modal Logics: KT45

 $\mathcal{L} = \{T, 4, 5\}$

Used for reasoning about knowledge.

09-Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

K KT45 KT4

Examples of Modal Logics: KT45

 $\mathcal{L} = \{T, 4, 5\}$

Used for reasoning about knowledge.

name	formula scheme	property of R
Т	$\Box \phi \to \phi$	reflexive
4	$\Box\phi\to\Box\Box\phi$	transitive
5	$\Diamond\phi\rightarrow\Box\Diamond\phi$	Euclidean

09-Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

К **КТ45** КТ4

Examples of Modal Logics: KT45

 $\mathcal{L} = \{T, 4, 5\}$

Used for reasoning about knowledge.

name	formula scheme	property of R
Т	$\Box \phi \to \phi$	reflexive
4	$\Box\phi\to\Box\Box\phi$	transitive
5	$\Diamond\phi\rightarrow\Box\Diamond\phi$	Euclidean

- T: Truth: agent Q only knows true things.
- 4: Positive introspection: If Q knows something, he knows that he knows it.
- 5: Negative introspection: If Q doesn't know something, he knows that he doesn't know it.

・ロト ・ 日 ・ ・ ヨ ・ ・

크

K KT45 KT4

Explanation of Negative Introspection

name	formula scheme	property of R
5	$\Diamond\phi\rightarrow\Box\Diamond\phi$	Euclidean

09-Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

K KT45 KT4

Explanation of Negative Introspection

name	formula scheme	property of R
5	$\Diamond\phi\rightarrow\Box\Diamond\phi$	Euclidean

$$\Diamond \phi \rightarrow \Box \Diamond \phi$$

09-Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

K KT45 KT4

Explanation of Negative Introspection

name	formula scheme	property of R
5	$\Diamond\phi\rightarrow\Box\Diamond\phi$	Euclidean

$$\begin{array}{rcl} \Diamond\phi & \rightarrow & \Box\Diamond\phi \\ \Diamond\neg\psi & \rightarrow & \Box\Diamond\neg\psi \end{array}$$

09-Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

K **KT45** KT4

Explanation of Negative Introspection

name	formula scheme	property of R
5	$\Diamond\phi\rightarrow\Box\Diamond\phi$	Euclidean

$$\begin{array}{rcl} & \Diamond \phi & \rightarrow & \Box \Diamond \phi \\ & \Diamond \neg \psi & \rightarrow & \Box \Diamond \neg \psi \\ \neg \Box \neg \neg \psi & \rightarrow & \Box \neg \Box \neg \neg \psi \end{array}$$

09—Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

K KT45 KT4

Explanation of Negative Introspection

name	formula scheme	property of R
5	$\Diamond\phi\rightarrow\Box\Diamond\phi$	Euclidean

$$\begin{array}{ccc} \Diamond \phi & \rightarrow & \Box \Diamond \phi \\ \Diamond \neg \psi & \rightarrow & \Box \Diamond \neg \psi \\ \neg \Box \neg \neg \psi & \rightarrow & \Box \neg \Box \neg \neg \psi \\ \neg \Box \psi & \rightarrow & \Box \neg \Box \psi \end{array}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

K KT45 KT4

Explanation of Negative Introspection

name	formula scheme	property of R
5	$\Diamond\phi\rightarrow\Box\Diamond\phi$	Euclidean

$$\begin{array}{ccc} \Diamond \phi & \rightarrow & \Box \Diamond \phi \\ \Diamond \neg \psi & \rightarrow & \Box \Diamond \neg \psi \\ \neg \Box \neg \neg \psi & \rightarrow & \Box \neg \Box \neg \neg \psi \\ \neg \Box \psi & \rightarrow & \Box \neg \Box \psi \end{array}$$

If Q doesn't know ψ , he knows that he doesn't know ψ .

・ロン ・四 ・ ・ ヨン ・ ヨン ・

크

K KT45 KT4

Correspondence for KT45

Accessibility relations for KT45

KT45 hold if and only if R is reflexive (T), transitive (4) and Euclidean (5).

09—Modal Logic II

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

K KT45 KT4

Correspondence for KT45

Accessibility relations for KT45

KT45 hold if and only if R is reflexive (T), transitive (4) and Euclidean (5).

Fact on such relations

A relation is reflexive, transitive and Euclidean iff it is reflexive, transitive and symmetric, i.e. iff it is an equivalence relation.

09—Modal Logic II

< ロ > < 回 > < 回 > < 回 > 、

K KT45 KT4

Collapsing Modalities

Theorem

Any sequence of modal operators and negations is KT45 is equivalent to one of the following: $-, \Box, \Diamond, \neg, \neg \Box$, and $\neg \Diamond$, where - indicates the absence of any negation or modality.

09-Modal Logic II
K KT45 KT4

Collapsing Modalities

Theorem

Any sequence of modal operators and negations is KT45 is equivalent to one of the following: $-, \Box, \Diamond, \neg, \neg \Box$, and $\neg \Diamond$, where - indicates the absence of any negation or modality.

Examples

(日)

К **КТ45** КТ4

Collapsing Modalities

Theorem

Any sequence of modal operators and negations is KT45 is equivalent to one of the following: $-, \Box, \Diamond, \neg, \neg \Box$, and $\neg \Diamond$, where - indicates the absence of any negation or modality.

Examples

- $\bullet \ \Box \Box \phi \equiv \Box \phi$
- $\Diamond \Box \phi \equiv \Diamond \phi$

09-Modal Logic II

K KT45 KT4

Collapsing Modalities

Theorem

Any sequence of modal operators and negations is KT45 is equivalent to one of the following: $-, \Box, \Diamond, \neg, \neg \Box$, and $\neg \Diamond$, where - indicates the absence of any negation or modality.

Examples

- $\Box\Box\phi\equiv\Box\phi$
- $\Diamond \Box \phi \equiv \Diamond \phi$
- $\neg \Diamond \neg \phi \equiv \Box \phi$

09-Modal Logic II

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

K KT45 **KT4**

Examples of Modal Logics: KT4

 $\mathcal{L} = \{T, 4\}$

Used for partial evaluation in computer science.

09-Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

王

K KT45 KT4

Examples of Modal Logics: KT4

 $\mathcal{L} = \{T, 4\}$

Used for partial evaluation in computer science.

name	formula scheme	property of R
Т	$\Box \phi \to \phi$	reflexive
4	$\Box\phi\to\Box\Box\phi$	transitive

・ロト ・回 ト ・ヨト ・ヨト

臣

К КТ45 **КТ4**

Examples of Modal Logics: KT4

 $\mathcal{L} = \{T, 4\}$

Used for partial evaluation in computer science.

name	formula scheme	property of R
Т	$\Box \phi \to \phi$	reflexive
4	$\Box\phi\to\Box\Box\phi$	transitive

• T: Truth: agent Q only knows true things.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

크

К КТ45 **КТ4**

Examples of Modal Logics: KT4

 $\mathcal{L} = \{T, 4\}$

Used for partial evaluation in computer science.

name	formula scheme	property of R
Т	$\Box \phi \to \phi$	reflexive
4	$\Box\phi\to\Box\Box\phi$	transitive

- T: Truth: agent Q only knows true things.
- 4: Positive introspection: If Q knows something, he knows that he knows it.

르

K KT45 **KT4**

Correspondence for KT4

Accessibility relations for KT4

KT4 hold if and only if R is reflexive (T), and transitive (4).

09—Modal Logic II

・ロン ・四 ・ ・ ヨン ・ ヨン ・

크

K KT45 **KT4**

Correspondence for KT4

Accessibility relations for KT4

KT4 hold if and only if R is reflexive (T), and transitive (4).

Definition

A reflexive and transitive relation is called a preorder.

09—Modal Logic II

・ロ・ ・ 四・ ・ 回・ ・ 日・

르

K KT45 **KT4**

Collapsing Modalities

Theorem

Any sequence of modal operators and negations is KT4 is equivalent to one of the following:

 $-, \Box, \Diamond, \Box \Diamond, \Diamond \Box, \Box \Diamond \Box, \Diamond \Box \Diamond, \neg, \neg \Box, \neg \Diamond, \neg \Box \Diamond, \neg \Diamond \Box, \neg \Box \Diamond \Box, and \neg \Diamond \Box \Diamond.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

K KT45 KT4

Connection to Intuitionistic Logic

Definition

A model of intuitionistic propositional logic is a model $\mathcal{M} = (W, R, L)$ of KT4 such that R(x, y) always implies $L(x)(p) \rightarrow L(y)(p)$.

09—Modal Logic II

크

K KT45 KT4

Satisfaction in Intuitionistic Logic

Definition

We change the definition of $x \Vdash \phi$ as follows:

- x ||- ⊤
- x ⊮ ⊥
- $x \Vdash p$ iff $p \in L(x)$
- $\mathbf{x} \Vdash \phi \land \psi$ iff $\mathbf{x} \Vdash \phi$ and $\mathbf{x} \Vdash \psi$
- $\mathbf{x} \Vdash \phi \lor \psi$ iff $\mathbf{x} \Vdash \phi$ or $\mathbf{x} \Vdash \psi$

as usual,

09-Modal Logic II

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

K KT45 **KT4**

Satisfaction in Intuitionistic Logic

Definition

We change the definition of $x \Vdash \phi$ as follows:

- x ||- ⊤
- x ⊮ ⊥
- $x \Vdash p$ iff $p \in L(x)$
- $\mathbf{x} \Vdash \phi \land \psi$ iff $\mathbf{x} \Vdash \phi$ and $\mathbf{x} \Vdash \psi$
- $\mathbf{x} \Vdash \phi \lor \psi$ iff $\mathbf{x} \Vdash \phi$ or $\mathbf{x} \Vdash \psi$

as usual, but now:

• $x \Vdash \neg \phi$ iff for all y with R(x, y), we have $y \nvDash \phi$

09-Modal Logic II

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

K KT45 **KT4**

Satisfaction in Intuitionistic Logic

Definition

We change the definition of $x \Vdash \phi$ as follows:

- x ||- ⊤
- x ⊮ ⊥
- $x \Vdash p$ iff $p \in L(x)$
- $\mathbf{x} \Vdash \phi \land \psi$ iff $\mathbf{x} \Vdash \phi$ and $\mathbf{x} \Vdash \psi$
- $\mathbf{x} \Vdash \phi \lor \psi$ iff $\mathbf{x} \Vdash \phi$ or $\mathbf{x} \Vdash \psi$

as usual, but now:

- $x \Vdash \neg \phi$ iff for all y with R(x, y), we have $y \nvDash \phi$
- *x* ⊨ φ → ψ iff for all *y* with *R*(*x*, *y*), we have *y* ⊨ ψ whenever we have *y* ⊨ φ.

イロト イヨト イヨト イヨト

Example

Let $W = \{x, y\}, R = \{(x, x), (x, y), (y, y)\}, L(x)(p) = F, L(y)(p) = T.$

09-Modal Logic II

Example

Let $W = \{x, y\}, R = \{(x, x), (x, y), (y, y)\},$ L(x)(p) = F, L(y)(p) = T. Does $x \Vdash p \lor \neg p$ hold?

09—Modal Logic II

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 Review of Modal Logic
 K

 Some Modal Logics
 KT45

 Natural Deduction in Modal Logic
 KT45

 Knowledge in Multi-Agent Systems
 KT4

Example

Let
$$W = \{x, y\}, R = \{(x, x), (x, y), (y, y)\},\$$

 $L(x)(p) = F, L(y)(p) = T.$ Does $x \Vdash p \lor \neg p$ hold?
Since

• $\mathbf{x} \Vdash \phi \lor \psi$ iff $\mathbf{x} \Vdash \phi$ or $\mathbf{x} \Vdash \psi$

we would need: $x \Vdash \neg p$.

09-Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 990

Example

Let
$$W = \{x, y\}, R = \{(x, x), (x, y), (y, y)\},\$$

 $L(x)(p) = F, L(y)(p) = T.$ Does $x \Vdash p \lor \neg p$ hold?
Since

• $\mathbf{x} \Vdash \phi \lor \psi$ iff $\mathbf{x} \Vdash \phi$ or $\mathbf{x} \Vdash \psi$

we would need: $x \Vdash \neg p$. Since

• $x \Vdash \neg \phi$ iff for all y with R(x, y), we have $y \nvDash \phi$

we cannot establish $x \Vdash \neg p$.

Example

Let
$$W = \{x, y\}, R = \{(x, x), (x, y), (y, y)\},\$$

 $L(x)(p) = F, L(y)(p) = T.$ Does $x \Vdash p \lor \neg p$ hold?
Since

• $\mathbf{x} \Vdash \phi \lor \psi$ iff $\mathbf{x} \Vdash \phi$ or $\mathbf{x} \Vdash \psi$

we would need: $x \Vdash \neg p$.

Since

• $x \Vdash \neg \phi$ iff for all y with R(x, y), we have $y \nvDash \phi$

we cannot establish $x \Vdash \neg p$.

Idea

Do not allow "assumptions", even if they exhaust all possibilities.

09-Modal Logic II

・ロ・・ (日・・ (日・・ (日・)

크

More Boxes Rules Extra Rules Example

2 Some Modal Logics

3 Natural Deduction in Modal Logic

- More Boxes
- Rules
- Extra Rules
- Example

4 Knowledge in Multi-Agent Systems

(日)

More Boxes Rules Extra Rules Example

Dashed Boxes

Idea

In addition to proof boxes for assumptions, we introduce *blue boxes* that express knowledge about an *arbitrary accessible world*.

09—Modal Logic II

・ロ・・ (日・・ (日・・ (日・)

크

More Boxes Rules Extra Rules Example

Dashed Boxes

Idea

In addition to proof boxes for assumptions, we introduce *blue boxes* that express knowledge about an *arbitrary accessible world*.

Rules about blue boxes

09-Modal Logic II

(日)

크

More Boxes Rules Extra Rules Example

Dashed Boxes

Idea

In addition to proof boxes for assumptions, we introduce *blue boxes* that express knowledge about an *arbitrary accessible world*.

Rules about blue boxes

Whenever □φ occurs in a proof, φ may be put into a subsequent blue box.

イロト イヨト イヨト イヨト

More Boxes Rules Extra Rules Example

Dashed Boxes

Idea

In addition to proof boxes for assumptions, we introduce *blue boxes* that express knowledge about an *arbitrary accessible world*.

Rules about blue boxes

- Whenever □φ occurs in a proof, φ may be put into a subsequent blue box.
- Whenever φ occurs at the end of a blue box, □φ may be put after that blue box.

(口)

More Boxes Rules Extra Rules Example

Rules for \Box

Introduction of \Box :

09—Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 990

More Boxes Rules Extra Rules Example

Rules for \Box

Elimination of \Box :

09-Modal Logic II

More Boxes Rules Extra Rules Example

Extra Rules for KT45

09-Modal Logic II

< ロ > < 四 > < 回 > < 回 > < 回 > <

= 990

More Boxes Rules Extra Rules Example

Example Proof

$\vdash_{\mathcal{K}} \Box p \land \Box q \rightarrow \Box (p \land q)$

09-Modal Logic II

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Review of Modal Logic

- 2 Some Modal Logics
- 3 Natural Deduction in Modal Logic

4 Knowledge in Multi-Agent Systems

- Motivation: The Wise Women Puzzle
- Modal Logic KT45ⁿ
- Models of KT45ⁿ
- Formulation of Wise-Women Puzzle

(日)

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Wise Women Puzzle

• Three wise women, each wearing one hat, among three available red hats and *two* available white hats

・ロ・ ・ 四・ ・ 回・ ・ 日・

王

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Wise Women Puzzle

- Three wise women, each wearing one hat, among three available red hats and *two* available white hats
- Each wise woman is wise, can see other hats but not her own

王

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Wise Women Puzzle

- Three wise women, each wearing one hat, among three available red hats and *two* available white hats
- Each wise woman is wise, can see other hats but not her own
- Queen asks first wise woman: Do you know the color of your hat.

・ロ・・ 日・ ・ 日・ ・ 日・

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Wise Women Puzzle

- Three wise women, each wearing one hat, among three available red hats and *two* available white hats
- Each wise woman is wise, can see other hats but not her own
- Queen asks first wise woman: Do you know the color of your hat. Answer: No

・ロ・・ 日・ ・ 日・ ・ 日・

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Wise Women Puzzle

- Three wise women, each wearing one hat, among three available red hats and *two* available white hats
- Each wise woman is wise, can see other hats but not her own
- Queen asks first wise woman: Do you know the color of your hat. Answer: No
- Queen asks second wise woman: Do you know the color of your hat.

(日)

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Wise Women Puzzle

- Three wise women, each wearing one hat, among three available red hats and *two* available white hats
- Each wise woman is wise, can see other hats but not her own
- Queen asks first wise woman: Do you know the color of your hat. Answer: No
- Queen asks second wise woman: Do you know the color of your hat. Answer: No

(日)

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Wise Women Puzzle

- Three wise women, each wearing one hat, among three available red hats and *two* available white hats
- Each wise woman is wise, can see other hats but not her own
- Queen asks first wise woman: Do you know the color of your hat. Answer: No
- Queen asks second wise woman: Do you know the color of your hat. Answer: No
- Queen asks third wise woman: Do you know the color of your hat?

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・
Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Wise Women Puzzle

- Three wise women, each wearing one hat, among three available red hats and *two* available white hats
- Each wise woman is wise, can see other hats but not her own
- Queen asks first wise woman: Do you know the color of your hat. Answer: No
- Queen asks second wise woman: Do you know the color of your hat. Answer: No
- Queen asks third wise woman: Do you know the color of your hat?
- What is her answer?

(日)

Motivation

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Reasoning about knowledge

We saw that KT45 can be used to reason about an agent's knowledge.

・ロ・・ 日・ ・ 日・ ・ 日・

Motivation

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Reasoning about knowledge

We saw that KT45 can be used to reason about an agent's knowledge.

Difficulty

We have three agents (queen does not count), not just one. We want them to be able to reason about *each others* knowledge.

09-Modal Logic II

(日)

Motivation

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Reasoning about knowledge

We saw that KT45 can be used to reason about an agent's knowledge.

Difficulty

We have three agents (queen does not count), not just one. We want them to be able to reason about *each others* knowledge.

Idea

Introduce a \Box operator for each agent, and a \Box operator for a group of agents.

(日)

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Modal Logic KT45ⁿ

Agents

Assume a set $A = \{1, 2, \dots, n\}$ of agents.

09—Modal Logic II

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Modal Logic KT45ⁿ

Agents

Assume a set $A = \{1, 2, \dots, n\}$ of agents.

Modal connectives

Replace \Box by:

- *K_i* for each agent *i*
- E_G for any subset G of A

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Modal Logic KT45ⁿ

Agents

Assume a set $A = \{1, 2, \dots, n\}$ of agents.

Modal connectives

Replace \Box by:

- K_i for each agent i
- E_G for any subset G of A

Example

 $K_1 p \wedge K_1 \neg K_2 K_1 p$ means:

Agent 1 knows p, and also that Agent 2 does not know that Agent 1 knows p.

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Common Knowledge

"Everyone knows that everyone knows"

In KT45^{*n*}, $E_G E_G \phi$ is stronger than $E_G \phi$.

09-Modal Logic II

王

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Common Knowledge

"Everyone knows that everyone knows"

In KT45^{*n*}, $E_G E_G \phi$ is stronger than $E_G \phi$.

"Everyone knows everyone knows everyone knows"

In KT45^{*n*}, $E_G E_G E_G \phi$ is stronger than $E_G E_G \phi$.

09-Modal Logic II

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Common Knowledge

"Everyone knows that everyone knows"

In KT45^{*n*}, $E_G E_G \phi$ is stronger than $E_G \phi$.

"Everyone knows everyone knows everyone knows"

In KT45^{*n*}, $E_G E_G E_G \phi$ is stronger than $E_G E_G \phi$.

Common knowledge

The infinite conjunction $E_G \phi \wedge E_G E_G \phi \wedge \ldots$ is called "common knowledge of ϕ ", denoted, $C_G \phi$.

09-Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Distributed Knowledge

Combine knowledge

If intelligent agents communicate with each other and use the knowledge each have, they can discover new knowledge.

09-Modal Logic II

・ロ・・ 日・ ・ 日・ ・ 日・

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Distributed Knowledge

Combine knowledge

If intelligent agents communicate with each other and use the knowledge each have, they can discover new knowledge.

Distributed knowledge

The operator $D_G \phi$ is called "distributed knowledge of ϕ ", denoted, $D_G \phi$.

09—Modal Logic II

・ロ・・ 日・ ・ 日・ ・ 日・

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Models of KT45ⁿ

Definition

A model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ of the multi-modal logic KT45^{*n*} is specified by three things:

09—Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 900

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ **Models of KT45ⁿ** Formulation of Wise-Women Puzzle

Models of KT45ⁿ

Definition

A model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ of the multi-modal logic KT45^{*n*} is specified by three things:

A set W, whose elements are called worlds;

09—Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Models of KT45ⁿ

Definition

A model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ of the multi-modal logic KT45^{*n*} is specified by three things:

- A set W, whose elements are called worlds;
- ② For each *i* ∈ A a relation R_i on W, meaning $R_i \subseteq W \times W$, called the accessibility relations;

・ロト ・回 ト ・ヨ ト ・

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Models of KT45ⁿ

Definition

A model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ of the multi-modal logic KT45^{*n*} is specified by three things:

- A set W, whose elements are called worlds;
- ② For each *i* ∈ A a relation R_i on W, meaning $R_i \subseteq W \times W$, called the accessibility relations;
- A labeling function $L: W \to \mathcal{P}(Atoms)$.

< ロ > < 回 > < 回 > < 回 > < 回 > <

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

09—Modal Logic II

・ロン ・四 ・ ・ ヨン ・ ヨン ・

王

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

• $x \Vdash p$ iff $p \in L(x)$

09—Modal Logic II

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

- $x \Vdash p$ iff $p \in L(x)$
- $\mathbf{x} \Vdash \neg \phi$ iff $\mathbf{x} \not\Vdash \phi$

・ロ・ ・ 四・ ・ 回・ ・ 回・

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

- $x \Vdash p$ iff $p \in L(x)$
- $\boldsymbol{x} \Vdash \neg \phi$ iff $\boldsymbol{x} \not\Vdash \phi$

•
$$x \Vdash \phi \land \psi$$
 iff $x \Vdash \phi$ and $x \Vdash \psi$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

- $x \Vdash p$ iff $p \in L(x)$
- $\mathbf{x} \Vdash \neg \phi$ iff $\mathbf{x} \not\Vdash \phi$

•
$$x \Vdash \phi \land \psi$$
 iff $x \Vdash \phi$ and $x \Vdash \psi$

•
$$\boldsymbol{x} \Vdash \phi \lor \psi$$
 iff $\boldsymbol{x} \Vdash \phi$ or $\boldsymbol{x} \Vdash \psi$

09—Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

12

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ

Definition

o ...

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

- $x \Vdash p$ iff $p \in L(x)$
- $\mathbf{x} \Vdash \neg \phi$ iff $\mathbf{x} \not\Vdash \phi$

•
$$x \Vdash \phi \land \psi$$
 iff $x \Vdash \phi$ and $x \Vdash \psi$

•
$$\mathbf{x} \Vdash \phi \lor \psi$$
 iff $\mathbf{x} \Vdash \phi$ or $\mathbf{x} \Vdash \psi$

•
$$x \Vdash \phi \rightarrow \psi$$
 iff $x \Vdash \psi$, whenever $x \Vdash \phi$

09-Modal Logic II

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ (continued)

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

• ...

09-Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ (continued)

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

• ...

• $x \Vdash K_i \phi$ iff for each $y \in W$ with $R_i(x, y)$, we have $y \Vdash \phi$

・ロン ・四 ・ ・ ヨン ・ ヨン ・

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ (continued)

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

- ...
- $x \Vdash K_i \phi$ iff for each $y \in W$ with $R_i(x, y)$, we have $y \Vdash \phi$
- $x \Vdash E_G \phi$ iff for each $i \in G$, $x \Vdash K_i \phi$.

・ロト ・回 ト ・ヨト ・ヨト

르

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ (continued)

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

- ...
- $x \Vdash K_i \phi$ iff for each $y \in W$ with $R_i(x, y)$, we have $y \Vdash \phi$
- $x \Vdash E_G \phi$ iff for each $i \in G$, $x \Vdash K_i \phi$.
- $x \Vdash C_G \phi$ iff for each $k \ge 1$, we have $x \Vdash E_G{}^k \phi$.

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Semantics of KT45ⁿ (continued)

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

- ...
- $x \Vdash K_i \phi$ iff for each $y \in W$ with $R_i(x, y)$, we have $y \Vdash \phi$
- $x \Vdash E_G \phi$ iff for each $i \in G$, $x \Vdash K_i \phi$.
- $x \Vdash C_G \phi$ iff for each $k \ge 1$, we have $x \Vdash E_G^k \phi$.
- $x \Vdash D_G \phi$ iff for each $y \in W$, we have $y \Vdash \phi$, whenever $R_i(x, y)$ for all $i \in G$.

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Formulation of Wise-Women Puzzle

Setup

- Wise woman *i* has red hat: *p_i*
- Wise woman *i* knows that wise woman *j* has a red hat:
 K_i p_j

09-Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

E DQC

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Formulation of Wise-Women Puzzle

Initial situation

Г

$$egin{aligned} & \mathcal{C}(p_1 ee p_2 ee p_3), \ & \mathcal{C}(p_1
ightarrow K_2 p_1), \mathcal{C}(\neg p_1
ightarrow K_2 \neg p_1), \ & \mathcal{C}(p_1
ightarrow K_3 p_1), \mathcal{C}(\neg p_1
ightarrow K_3 \neg p_1), \ & \mathcal{C}(p_2
ightarrow K_1 p_2), \mathcal{C}(\neg p_2
ightarrow K_1 \neg p_2), \ & \mathcal{C}(p_2
ightarrow K_3 p_2), \mathcal{C}(\neg p_2
ightarrow K_3 \neg p_2), \ & \mathcal{C}(p_3
ightarrow K_1 p_3), \mathcal{C}(\neg p_2
ightarrow K_1 \neg p_3), \ & \mathcal{C}(p_3
ightarrow K_2 p_3), \mathcal{C}(\neg p_2
ightarrow K_2 \neg p_3) \} \end{aligned}$$

09-Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 990

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Announcements

First wise woman says "No"

$$C(\neg K_1p_1 \land \neg K_1 \neg p_1)$$

Second wise woman says "No"

$$C(\neg K_2 p_2 \land \neg K_2 \neg p_2)$$

09—Modal Logic II

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

First Attempt

$\mathsf{\Gamma}, C(\neg K_1 p_1 \land \neg K_1 \neg p_1), C(\neg K_2 p_2 \land \neg K_2 \neg p_2) \vdash K_3 p_3$

09—Modal Logic II

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

First Attempt

$$\Gamma, C(\neg K_1 p_1 \land \neg K_1 \neg p_1), C(\neg K_2 p_2 \land \neg K_2 \neg p_2) \vdash K_3 p_3$$

Problem

This does not take time into account. The second announcement can take the first announcement into account.

09—Modal Logic II

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Solution

Prove separately: Entailment 1 :

$$\Gamma, C(
eg K_1 p_1 \wedge
eg K_1
eg p_1) \vdash C(p_2 \lor p_3)$$

09-Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

= 990

 Review of Modal Logic
 Motivation: The Wise Women Puzzle

 Some Modal Logics
 Modal Logic KT45ⁿ

 Natural Deduction in Modal Logic
 Models of KT45ⁿ

 Knowledge in Multi-Agent Systems
 Formulation of Wise-Women Puzzle

Solution

Prove separately: Entailment 1 :

$$\Gamma, C(\neg K_1 p_1 \land \neg K_1 \neg p_1) \vdash C(p_2 \lor p_3)$$

Entailment 2 :

$$\mathsf{\Gamma}, \textit{C}(\textit{p}_2 \lor \textit{p}_3), \textit{C}(\neg\textit{K}_2\textit{p}_2 \land \neg\textit{K}_2 \neg \textit{p}_2) \vdash \textit{K}_3\textit{p}_3$$

09—Modal Logic II

・ロト ・回 ト ・ヨト ・ヨト

臣

 Review of Modal Logic
 Motivation: The Wise Women Puzzle

 Some Modal Logics
 Modal Logic KT45ⁿ

 Natural Deduction in Modal Logic
 Models of KT45ⁿ

 Knowledge in Multi-Agent Systems
 Formulation of Wise-Women Puzzle

Solution

Prove separately: Entailment 1 :

$$\Gamma, C(\neg K_1 p_1 \land \neg K_1 \neg p_1) \vdash C(p_2 \lor p_3)$$

Entailment 2 :

$$\mathsf{\Gamma}, \textit{C}(\textit{p}_2 \lor \textit{p}_3), \textit{C}(\neg\textit{K}_2\textit{p}_2 \land \neg\textit{K}_2 \neg \textit{p}_2) \vdash \textit{K}_3\textit{p}_3$$

Proof

Through natural deduction in KT45ⁿ.

09-Modal Logic II

・ロト ・四ト ・ヨト ・ヨト

臣