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Motivation
Basic Modal Logic
Logic Engineering

Necessity

You are crime investigator and consider different suspects.
You know that the victim Ms Smith had called the police.

Maybe the cook did it before dinner?
Maybe the maid did it after dinner?

But: “The victim Ms Smith made a phone call before she
was killed.” is necessarily true.

“Necessarily” means in all possible scenarios (worlds)
under consideration.
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Notions of Truth

Often, it is not enough to distinguish between “true” and
“false”.
We need to consider modalities if truth, such as:

necessity (“in all possible scenarios”)
morality/law (“in acceptable/legal scenarios”)
time (“forever in the future”)

Modal logic constructs a framework using which modalities
can be formalized and reasoning methods can be
established.
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Syntax of Basic Modal Logic

φ ::= ⊤ | ⊥ | p | (¬φ) | (φ ∧ φ)
| (φ ∨ φ) | (φ→ φ)

| (�φ) | (♦φ)
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Pronunciation

If we want to keep the meaning open, we simply say “box” and
“diamond”.
If we want to appeal to our intuition, we may say “necessarily”
and “possibly” (or “forever in the future” and “sometime in the
future”)

Examples

(p ∧ ♦(p → �¬r))
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Pronunciation and Examples

Pronunciation

If we want to keep the meaning open, we simply say “box” and
“diamond”.
If we want to appeal to our intuition, we may say “necessarily”
and “possibly” (or “forever in the future” and “sometime in the
future”)

Examples

(p ∧ ♦(p → �¬r))

�((♦q ∧ ¬r) → �p)
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1 A W of worlds;
2 a relation R on W , meaning R ⊆ W × W , called the

accessibility relation;
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Kripke Models

Definition

A model M of propositional modal logic over a set of
propositional atoms A is specified by three things:

1 A W of worlds;
2 a relation R on W , meaning R ⊆ W × W , called the

accessibility relation;
3 a function L : W → A → {T ,F}, called labeling function.
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How do I know I am not dreaming? Saul Kripke asked himself
this question in 1952, at the age of 12.
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this question in 1952, at the age of 12. His father
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Who is Kripke?

How do I know I am not dreaming? Saul Kripke asked himself
this question in 1952, at the age of 12. His father
told him about the philosopher Descartes.

Modal logic at 17 Kripke’s self-studies in philosophy and logic
led him to prove a fundamental completeness
theorem on modal logic at the age of 17.

Bachelor in Mathematics from Harvard is his only
non-honorary degree

At Princeton Kripke taught philosophy from 1977 onwards.

Contributions include modal logic, naming, belief, truth, the
meaning of “I”
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Example

W = {x1, x2, x3, x4, x5, x6}
R = {(x1, x2), (x1, x3), (x2, x2), (x2, x3), (x3, x2), (x4, x5), (x5, x4), (x5, x6)}
L = {(x1, {q}), (x2, {p, q}), (x3, {p}), (x4, {q}), (x5, {}), (x6, {p})}

p
q

p

q

p, q

x1

x2

x3

x4

x5

x6
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Definition

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:
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Definition

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:

x  ⊤
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Definition

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:

x  ⊤
x 6 ⊥
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When is a formula true in a possible world?

Definition

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:

x  ⊤
x 6 ⊥
x  p iff L(x)(p) = T
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When is a formula true in a possible world?

Definition

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:

x  ⊤
x 6 ⊥
x  p iff L(x)(p) = T

x  ¬φ iff x 6 φ
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When is a formula true in a possible world?

Definition

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:

x  ⊤
x 6 ⊥
x  p iff L(x)(p) = T

x  ¬φ iff x 6 φ

x  φ ∧ ψ iff x  φ and x  ψ
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When is a formula true in a possible world?

Definition

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:

x  ⊤
x 6 ⊥
x  p iff L(x)(p) = T

x  ¬φ iff x 6 φ

x  φ ∧ ψ iff x  φ and x  ψ

x  φ ∨ ψ iff x  φ or x  ψ

...
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Definition (continued)

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:

...

x  φ→ ψ iff x  ψ, whenever x  φ
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When is a formula true in a possible world?

Definition (continued)

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:

...

x  φ→ ψ iff x  ψ, whenever x  φ

x  �φ iff for each y ∈ W with R(x , y), we have y  φ
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When is a formula true in a possible world?

Definition (continued)

Let M = (W ,R, L), x ∈ W , and φ a formula in basic modal
logic. We define x  φ via structural induction:

...

x  φ→ ψ iff x  ψ, whenever x  φ

x  �φ iff for each y ∈ W with R(x , y), we have y  φ

x  ♦φ iff there is a y ∈ W such that R(x , y) and y  φ.
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q
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p
q

p

q

p, q

x1

x2

x3

x4

x5

x6

x1  q

08—Modal Logic



Motivation
Basic Modal Logic
Logic Engineering

Syntax
Semantics
Equivalences

Example

p
q

p

q

p, q

x1

x2

x3

x4

x5

x6

x1  q

x1  ♦q, x1 6 �q
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p
q

p

q

p, q

x1

x2

x3

x4

x5

x6

x1  q

x1  ♦q, x1 6 �q

x5 6 �p, x5 6 �q, x5 6 �p ∨�q, x5  �(p ∨ q)
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p
q

p

q

p, q

x1

x2

x3

x4

x5

x6

x1  q

x1  ♦q, x1 6 �q

x5 6 �p, x5 6 �q, x5 6 �p ∨�q, x5  �(p ∨ q)

x6  �φ holds for all φ, but x6 6 ♦φ regardless of φ
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We said x6  �φ holds for all φ, but x6 6 ♦φ regardless of φ

Notation

Greek letters denote formulas, and are not propositional atoms.
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Formula Schemes

Example

We said x6  �φ holds for all φ, but x6 6 ♦φ regardless of φ

Notation

Greek letters denote formulas, and are not propositional atoms.

Formula schemes

Terms where Greek letters appear instead of propositional
atoms are called formula schemes.
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Entailment and Equivalence

Definition

A set of formulas Γ entails a formula ψ of basic modal logic if, in
any world x of any model M = (W ,R, L), whe have x  ψ

whenever x  φ for all φ ∈ Γ. We say Γ entails ψ and write
Γ |= ψ.
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Entailment and Equivalence

Definition

A set of formulas Γ entails a formula ψ of basic modal logic if, in
any world x of any model M = (W ,R, L), whe have x  ψ

whenever x  φ for all φ ∈ Γ. We say Γ entails ψ and write
Γ |= ψ.

Equivalence

We write φ ≡ ψ if φ |= ψ and ψ |= φ.

08—Modal Logic



Motivation
Basic Modal Logic
Logic Engineering

Syntax
Semantics
Equivalences

Some Equivalences

De Morgan rules: ¬�φ ≡ ♦¬φ, ¬♦φ ≡ �¬φ.
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Some Equivalences

De Morgan rules: ¬�φ ≡ ♦¬φ, ¬♦φ ≡ �¬φ.

Distributivity of � over ∧:

�(φ ∧ ψ) ≡ �φ ∧�ψ

Distributivity of ♦ over ∨:

♦(φ ∨ ψ) ≡ ♦φ ∨ ♦ψ

�⊤ ≡ ⊤, ♦⊥ ≡ ⊥
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Validity

Definition

A formula φ is valid if it is true in every world of every model, i.e.
iff |= φ holds.
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All valid formulas of propositional logic

¬�φ→ ♦¬φ
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¬�φ→ ♦¬φ
�(φ ∧ ψ) → �φ ∧�ψ
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All valid formulas of propositional logic

¬�φ→ ♦¬φ
�(φ ∧ ψ) → �φ ∧�ψ

♦(φ ∨ ψ) → ♦φ ∨ ♦ψ
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Examples of Valid Formulas

All valid formulas of propositional logic

¬�φ→ ♦¬φ
�(φ ∧ ψ) → �φ ∧�ψ

♦(φ ∨ ψ) → ♦φ ∨ ♦ψ

Formula K : �(φ→ ψ) → �φ→ �ψ.
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A Range of Modalities

In a particular context �φ could mean:

It is necessarily true that φ

It will always be true that φ

It ought to be that φ

Agent Q believes that φ

Agent Q knows that φ

After any execution of program P, φ holds.
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A Range of Modalities

In a particular context �φ could mean:

It is necessarily true that φ

It will always be true that φ

It ought to be that φ

Agent Q believes that φ

Agent Q knows that φ

After any execution of program P, φ holds.

Since ♦φ ≡ ¬�¬φ, we can infer the meaning of ♦ in each
context.
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A Range of Modalities

From the meaning of �φ, we can conclude the meaning of ♦φ,
since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ
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From the meaning of �φ, we can conclude the meaning of ♦φ,
since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ It is possibly true that φ
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A Range of Modalities

From the meaning of �φ, we can conclude the meaning of ♦φ,
since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ It is possibly true that φ
It will always be true that φ Sometime in the future φ
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From the meaning of �φ, we can conclude the meaning of ♦φ,
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�φ ♦φ
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It ought to be that φ It is permitted to be that φ
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A Range of Modalities

From the meaning of �φ, we can conclude the meaning of ♦φ,
since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ It is possibly true that φ
It will always be true that φ Sometime in the future φ
It ought to be that φ It is permitted to be that φ
Agent Q believes that φ
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A Range of Modalities

From the meaning of �φ, we can conclude the meaning of ♦φ,
since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ It is possibly true that φ
It will always be true that φ Sometime in the future φ
It ought to be that φ It is permitted to be that φ
Agent Q believes that φ φ is consistent with Q’s beliefs
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since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ It is possibly true that φ
It will always be true that φ Sometime in the future φ
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Agent Q knows that φ
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A Range of Modalities

From the meaning of �φ, we can conclude the meaning of ♦φ,
since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ It is possibly true that φ
It will always be true that φ Sometime in the future φ
It ought to be that φ It is permitted to be that φ
Agent Q believes that φ φ is consistent with Q’s beliefs
Agent Q knows that φ For all Q knows, φ
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A Range of Modalities

From the meaning of �φ, we can conclude the meaning of ♦φ,
since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ It is possibly true that φ
It will always be true that φ Sometime in the future φ
It ought to be that φ It is permitted to be that φ
Agent Q believes that φ φ is consistent with Q’s beliefs
Agent Q knows that φ For all Q knows, φ
After any run of P, φ holds.
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A Range of Modalities

From the meaning of �φ, we can conclude the meaning of ♦φ,
since ♦φ ≡ ¬�¬φ:
�φ ♦φ

It is necessarily true that φ It is possibly true that φ
It will always be true that φ Sometime in the future φ
It ought to be that φ It is permitted to be that φ
Agent Q believes that φ φ is consistent with Q’s beliefs
Agent Q knows that φ For all Q knows, φ
After any run of P, φ holds. After some run of P, φ holds
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Formula Schemes that hold wrt some Modalities

�φ �
φ
→
φ

�
φ
→

�
�
φ

♦φ
→

�
♦φ

♦⊤ �
φ
→

♦φ

�
φ
∨�

¬φ

�
(φ
→
ψ)

∧�
φ
→

�
ψ

♦φ
∧ ♦
ψ
→

♦(
φ
∧ ψ

)

It is necessary that φ
√ √ √ √ √ × √ ×

It will always be that φ × √ × × × × √ ×
It ought to be that φ × × × √ √ × √ ×
Agent Q believes that φ × √ √ √ √ × √ ×
Agent Q knows that φ

√ √ √ √ √ × √ ×
After running P, φ × × × × × × √ ×
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Modalities lead to Interpretations of R
�φ R(x , y)

It is necessarily true that φ y is possible world according to info at x

It will always be true that φ y is a future world of x

It ought to be that φ y is an acceptable world according to the
information at x

Agent Q believes that φ y could be the actual world according to
Q’s beliefs at x

Agent Q knows that φ y could be the actual world according to
Q’s knowledge at x

After any execution of P, φ
holds

y is a possible resulting state after execu-
tion of P at x
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
symmetric: for every x , y ∈ W , we have R(x , y) implies
R(y , x).
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
symmetric: for every x , y ∈ W , we have R(x , y) implies
R(y , x).
serial: for every x there is a y such that R(x , y).
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
symmetric: for every x , y ∈ W , we have R(x , y) implies
R(y , x).
serial: for every x there is a y such that R(x , y).
transitive: for every x , y , z ∈ W , we have R(x , y) and
R(y , z) imply R(x , z).
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
symmetric: for every x , y ∈ W , we have R(x , y) implies
R(y , x).
serial: for every x there is a y such that R(x , y).
transitive: for every x , y , z ∈ W , we have R(x , y) and
R(y , z) imply R(x , z).
Euclidean: for every x , y , z ∈ W with R(x , y) and R(x , z),
we have R(y , z).
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
symmetric: for every x , y ∈ W , we have R(x , y) implies
R(y , x).
serial: for every x there is a y such that R(x , y).
transitive: for every x , y , z ∈ W , we have R(x , y) and
R(y , z) imply R(x , z).
Euclidean: for every x , y , z ∈ W with R(x , y) and R(x , z),
we have R(y , z).
functional: for each x there is a unique y such that R(x , y).
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
symmetric: for every x , y ∈ W , we have R(x , y) implies
R(y , x).
serial: for every x there is a y such that R(x , y).
transitive: for every x , y , z ∈ W , we have R(x , y) and
R(y , z) imply R(x , z).
Euclidean: for every x , y , z ∈ W with R(x , y) and R(x , z),
we have R(y , z).
functional: for each x there is a unique y such that R(x , y).
linear: for every x , y , z ∈ W with R(x , y) and R(x , z), we
have R(y , z) or y = z or R(z, y).
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
symmetric: for every x , y ∈ W , we have R(x , y) implies
R(y , x).
serial: for every x there is a y such that R(x , y).
transitive: for every x , y , z ∈ W , we have R(x , y) and
R(y , z) imply R(x , z).
Euclidean: for every x , y , z ∈ W with R(x , y) and R(x , z),
we have R(y , z).
functional: for each x there is a unique y such that R(x , y).
linear: for every x , y , z ∈ W with R(x , y) and R(x , z), we
have R(y , z) or y = z or R(z, y).
total: for every x , y ∈ W , we have R(x , y) and R(y , x).
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Possible Properties of R

reflexive: for every w ∈ W , we have R(x , x).
symmetric: for every x , y ∈ W , we have R(x , y) implies
R(y , x).
serial: for every x there is a y such that R(x , y).
transitive: for every x , y , z ∈ W , we have R(x , y) and
R(y , z) imply R(x , z).
Euclidean: for every x , y , z ∈ W with R(x , y) and R(x , z),
we have R(y , z).
functional: for each x there is a unique y such that R(x , y).
linear: for every x , y , z ∈ W with R(x , y) and R(x , z), we
have R(y , z) or y = z or R(z, y).
total: for every x , y ∈ W , we have R(x , y) and R(y , x).
equivalence: reflexive, symmetric and transitive.
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Example

Consider the modality in which �φ means
“it ought to be that φ”.
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Example

Consider the modality in which �φ means
“it ought to be that φ”.

Should R be reflexive?
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Example

Consider the modality in which �φ means
“it ought to be that φ”.

Should R be reflexive?

Should R be serial?
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Necessarily true and Reflexivity

Guess

R is reflexive if and only if �φ→ φ is valid.
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Motivation

We would like to establish that some formulas hold
whenever R has a particular property.
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Motivation

We would like to establish that some formulas hold
whenever R has a particular property.

Ignore L, and only consider the (W ,R) part of a model,
called frame.
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Motivation

We would like to establish that some formulas hold
whenever R has a particular property.

Ignore L, and only consider the (W ,R) part of a model,
called frame.

Establish formula schemes based on properties of frames.
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Reflexivity and Transitivity

Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

R is reflexive;

F satisfies �φ→ φ;

F satisfies �p → p for any atom p
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Reflexivity and Transitivity

Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

R is reflexive;

F satisfies �φ→ φ;

F satisfies �p → p for any atom p

Theorem 2

The following statements are equivalent:

R is transitive;

F satisfies �φ→ ��φ;

F satisfies �p → ��p for any atom p
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

1 ⇒ 2: Let R be reflexive.
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

1 ⇒ 2: Let R be reflexive. Let L be any labeling function;
M = (W ,R, L).
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

1 ⇒ 2: Let R be reflexive. Let L be any labeling function;
M = (W ,R, L). Need to show for any x :
x  �φ→ φ
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

1 ⇒ 2: Let R be reflexive. Let L be any labeling function;
M = (W ,R, L). Need to show for any x :
x  �φ→ φ Suppose x  �φ.
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

1 ⇒ 2: Let R be reflexive. Let L be any labeling function;
M = (W ,R, L). Need to show for any x :
x  �φ→ φ Suppose x  �φ.
Since R is reflexive, we have x  φ.
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

1 ⇒ 2: Let R be reflexive. Let L be any labeling function;
M = (W ,R, L). Need to show for any x :
x  �φ→ φ Suppose x  �φ.
Since R is reflexive, we have x  φ.
Using the semantics of →: x  �φ→ φ
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

08—Modal Logic



Motivation
Basic Modal Logic
Logic Engineering

Valid Formulas wrt Modalities
Properties of R
Correspondence Theory
Preview: Some Modal Logics

Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

2 ⇒ 3: Just set φ to be p
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

3 ⇒ 1: Suppose the frame satisfies �p → p.
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

3 ⇒ 1: Suppose the frame satisfies �p → p.
Take any world x from W .
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

3 ⇒ 1: Suppose the frame satisfies �p → p.
Take any world x from W .
Choose a labeling function L such that
L(x)(p) = F , but L(y)(p) = T for all y with y 6= x
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

3 ⇒ 1: Suppose the frame satisfies �p → p.
Take any world x from W .
Choose a labeling function L such that
L(x)(p) = F , but L(y)(p) = T for all y with y 6= x
Proof by contradiction: Assume (x , x) 6∈ R.
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Proof of Theorem 1

Let F = (W ,R) be a frame. The following statements are
equivalent:

1 R is reflexive;
2 F satisfies �φ→ φ;
3 F satisfies �p → p for any atom p

3 ⇒ 1: Suppose the frame satisfies �p → p.
Take any world x from W .
Choose a labeling function L such that
L(x)(p) = F , but L(y)(p) = T for all y with y 6= x
Proof by contradiction: Assume (x , x) 6∈ R. Then
we would have x  �p, but not x  p.
Contradiction!
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Formula Schemes and Properties of R

name formula scheme property of R
T �φ→ φ reflexive
B φ→ �♦φ symmetric
D �φ→ ♦φ serial
4 �φ→ ��φ transitive
5 ♦φ→ �♦φ Euclidean

�φ→ ♦φ ∧ ♦φ→ �φ functional
�(φ ∧�φ→ ψ) ∨�(ψ ∧�ψ → φ) linear
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Which Formula Schemes to Choose?

Definition

Let L be a set of formula schemes and Γ ∪ {ψ} a set of
formulas of basic modal logic.
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Which Formula Schemes to Choose?

Definition

Let L be a set of formula schemes and Γ ∪ {ψ} a set of
formulas of basic modal logic.

A set of formula schemes is said to be closed iff it contains
all substitution instances of its elements.
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Which Formula Schemes to Choose?

Definition

Let L be a set of formula schemes and Γ ∪ {ψ} a set of
formulas of basic modal logic.

A set of formula schemes is said to be closed iff it contains
all substitution instances of its elements.

Let Lc be the smallest closed superset of L.
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Which Formula Schemes to Choose?

Definition

Let L be a set of formula schemes and Γ ∪ {ψ} a set of
formulas of basic modal logic.

A set of formula schemes is said to be closed iff it contains
all substitution instances of its elements.

Let Lc be the smallest closed superset of L.

Γ entails ψ in L iff Γ ∪ Lc semantically entails ψ. We say
Γ |=L ψ.
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Examples of Modal Logics: K

K is the weakest modal logic, L = ∅.
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Examples of Modal Logics: KT45

L = {T , 4, 5}
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Examples of Modal Logics: KT45

L = {T , 4, 5}

Used for reasoning about knowledge.

T: Truth: agent Q only knows true things.

4: Positive introspection: If Q knows something, he knows
that he knows it.

5: Negative introspection: If Q doesn’t know something, he
knows that he doesn’t know it.
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