— Advanced Logic —

Linear Temporal Logic
Computation Tree Logic

Daniel Gebler

VU University Amsterdam

March 11, 2013

Overview

Linear temporal logic (LTL):
» describes properties of paths (individual executions)

» no modalities to reason about branching

Computation tree logic (CTL):
» is a branching-time logic
» time has a tree structure (multiple possible futures)

» has modalities for reasoning about the branching structure

Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is defined by:

pu=p|T|-9|oANS|dUP[X
where p € Q

LTL formulas have meaning on individual computation paths:

> let m =5, — 5 — 53 — ... a path; write 7 for 5; — sj41 — ...
The path 7 satisfies ¢, 7 |= ¢, is defined by:

Q@ 7 piff sy € V(p)

eﬂ‘):T; ﬂ):ﬁ(biﬂ:ﬂ‘[#(ﬁ; ﬂ):¢1A¢2ifFﬂ|:¢1andw|:¢2

Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is defined by:
pu=p|T|-0|ond|oUd| X9
where p € Q

LTL formulas have meaning on individual computation paths:

> let m =5, — 5 — 53 — ... a path; write 7 for 5; — sj41 — ...
The path 7 satisfies ¢, 7 |= ¢, is defined by:

Q@ 7 piff s € V(p)

Q@ rE=T, nE-iffrEeg

= 1 A ¢ iff m = 1 and T = ¢

Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is defined by:
¢u=p|T[-p|oNd|dUG| X0
where p € Q

LTL formulas have meaning on individual computation paths:

> let m =5, — 5 — 53 — ... a path; write 7 for 5; — sj41 — ...
The path 7 satisfies ¢, 7 |= ¢, is defined by:

Q@ 7 piff s € V(p)

Q@ rE=T, nE-iffrEeg

= 1 A ¢ iff m = 1 and T = ¢

Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is defined by:
pu=p|T|-9|oANS|dUP[X
where p € Q
LTL formulas have meaning on individual computation paths:
> let m =5, — 5 — 53 — ... a path; write 7 for 5; — sj41 — ...
The path 7 satisfies ¢, 7 |= ¢, is defined by:
Q@ 7 piff s € V(p)

Q@ rET, nE-GiffrEg, TEGMAGIfTE@ and 1 = ¢
Q@ mEoUy (¢is true until ¢ is true)
e — Yo —— Yo SO ——P @D

¢ ¢ ¢ ¢ (0
formally: for some i > 1, n' =4 and for all j < i, 7/ |= ¢

Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is defined by:
pu=p|T|-9|oANS|dUP[X
where p € Q
LTL formulas have meaning on individual computation paths:
> let m =5, — 5 — 53 — ... a path; write 7 for 5; — sj41 — ...
The path 7 satisfies ¢, 7 |= ¢, is defined by:
Q@ 7 piff s € V(p)

Q@ rET, nE-GiffrEg, TEGMAGIfTE@ and 1 = ¢
Q@ mEoUy (¢is true until ¢ is true)
e — Yo —— Yo SO ——P @D

¢ ¢ ¢ & U

formally: for some i > 1, n' =4 and for all j < i, 7/ |= ¢

Q@ "tEX¢ (¢is true in the next moment in time)
@ — Yo —— S0 DO ——— D@D

¢
formally: 72 = ¢

LTL: Extended

Linear temporal logic (LTL) is defined by:
pu=p|TI=¢|¢NG[dUP|XP|FP|Co
where p € Q

LTL: Extended

Linear temporal logic (LTL) is defined by:

pu=p|T|-¢|ond|oU|XP|EP[GC

where p € Q until finally

LTL: Extended

Linear temporal logic (LTL) is defined by: globally

pu=p|T|-¢|oNe|oU|XP|EP[GCo

where p € Q until finally

LTL: Extended

Linear temporal logic (LTL) is defined by: globally

pu=p|T|-¢|oNe|oU|XP|EP[GCo

where p € Q until finally

Q@ rEGoiffforalli>1, 7 = ¢
@ — Yo —— S0 DO ——D @D

o 6 ¢ b ¢ @

LTL: Extended

Linear temporal logic (LTL) is defined by: globally

pu=p|T|-¢|oNe|oU|XP|EP[GCo

where p € Q until finally

Q@ rEGoiffforalli>1, 7 = ¢
R G
R
Q@ mEF¢iffforsome i >1, 7' = ¢
e — Yo — 30 D0 D@D

¢

LTL: Extended

Linear temporal logic (LTL) is defined by: globally

pu=p|T|-¢|oNe|oU|XP|EP[GCo

where p € Q until finally

Q@ rEGoiffforalli>1, 7 = ¢
R G
R
Q@ mEF¢iffforsome i >1, 7' = ¢
e — Yo — 30 D0 D@D

¢

The modalities F and G can be defined:

LTL: Extended

Linear temporal logic (LTL) is defined by: globally

pu=p|T|-¢|oNe|oU|XP|EP[GCo

where p € Q until finally

Q@ rEGoiffforalli>1, 7 = ¢
R G
R
Q@ mEF¢iffforsome i >1, 7' = ¢
e — Yo — 30 D0 D@D

¢

The modalities F and G can be defined:
F=TU¢o

LTL: Extended

Linear temporal logic (LTL) is defined by: globally

pu=p|T|-¢|oNe|oU|XP|EP[GCo

where p € Q until finally

Q@ rEGoiffforalli>1, 7 = ¢
R G
R
Q@ mEF¢iffforsome i >1, 7' = ¢
e — Yo — 30 D0 D@D

¢

The modalities F and G can be defined:
F=TU¢o

Binding strength: —, X ,F ,G stronger than U than A,V than —, <

» FGo:

LTL: Examples

» F G ¢: from some point on, ¢ holds forever

e — Yo —S@-----) SO0 ——30——3@-ararD>

o 6 ¢ @

LTL: Examples

» F G ¢: from some point on, ¢ holds forever

e — Yo —S@-----) SO0 ——30——3@-ararD>

o 6 ¢ @
> GF ¢:

LTL: Examples

» F G ¢: from some point on, ¢ holds forever

e — Yo —S@-----) SO0 ——30——3@-ararD>

o 6 ¢ @

» GF ¢: always eventually ¢ (in every suffix, at some point ¢ holds)

@ ——> @] >0 —— 3@ DO D @ > @D

¢ ¢ ¢

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

release

% _’@ pul @ breaks @

b — |
% extended extended,
malfunction

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

=

= _)@ pull @ breaks @

% extended extended,

malfunction
Which of the states satisfies the following?

? = X extended ? = F G extended
? E X X extended ? E —F G extended
? |= F extended ? = G (—extended — X extended)

? = G extended ? = G (extended — X —extended)
? |= G F extended

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

=

= _)@ pull @ breaks @

% extended extended,
malfunction

Which of the states satisfies the following?
M, s1, 53 = X extended
? E X X extended
? |= F extended
? = G extended
? |= G F extended

? = F G extended

? E —F G extended

? = G (—extended — X extended)
? = G (extended — X —extended)

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

=

= _)@ pull @ breaks @

% extended extended,
malfunction

Which of the states satisfies the following?

M, s1, 53 = X extended
M, 55, 53 = X X extended
? |= F extended
? = G extended
? |= G F extended

? = F G extended
? E —F G extended
? = G (—extended — X extended)
? = G (extended — X —extended)

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

=

= _)@ pull @ breaks @

% extended extended,
malfunction

Which of the states satisfies the following?

M, s1, 53 = X extended
M, 55, 53 = X X extended
M, 51, 5,53 = F extended
? = G extended
? |= G F extended

? = F G extended
? E —F G extended
? = G (—extended — X extended)
? = G (extended — X —extended)

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

=

= _)@ pull @ breaks @

% extended extended,
malfunction

Which of the states satisfies the following?

M, s1, 53 = X extended
M, 55, 53 = X X extended
M, 51, 5,53 = F extended
M, s3 = G extended
? |= G F extended

? = F G extended
? E —F G extended
? = G (—extended — X extended)
? = G (extended — X —extended)

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

_)@ pull @ breaks @

extended extended,
malfunction

SRR

Which of the states satisfies the following?
M, s1, 53 = X extended
M, sp, 53 = X X extended

M, s1, 52,53 = F extended
M, s3 = G extended

M, s1, 52,53 = G F extended

? = F G extended

? = —F G extended
? = G (—extended — X extended)

? = G (extended — X —extended)

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

_)@ pull @ breaks @

extended extended,
malfunction

SRR

Which of the states satisfies the following?
M, s1, 53 = X extended M, s3 = F G extended

M, sp, 53 = X X extended ? = —F G extended
M, s1, S, 53 = F extended ? = G (—extended — X extended)
M, s3 = G extended ? = G (extended — X —extended)

M, s1, 52,53 = G F extended

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

_)@ pull @ breaks @

extended extended,
malfunction

SRR

Which of the states satisfies the following?

M, s1, 53 = X extended M, s3 = F G extended

M, sy, 53 E X Xextended DM, s1,5,,s3 & —F G extended
M, s1, S, 53 = F extended ? = G (—extended — X extended)
M, s3 = G extended ? = G (extended — X —extended)

M, s1, 52,53 = G F extended

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

=

= _)@ pull @ breaks @

% extended extended,
malfunction

Which of the states satisfies the following?
M, s1, 53 = X extended M, s3 = F G extended
M, sy, 53 E X Xextended DM, s1,5,,s3 & —F G extended

M, s1, S, 53 = F extended ? = G (—extended — X extended)
M, s3 = G extended ? = G (extended — X —extended)

M, s1, 52,53 = G F extended

Note that: 9t [~ F G extended and 9}~ - F G extended !

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

=

= _)@ pull @ breaks @

% extended extended,
malfunction

Which of the states satisfies the following?

M, s1, 53 = X extended M, s3 = F G extended

M, sy, 53 E X Xextended DM, s1,5,,s3 & —F G extended
M, s1, S, 53 = F extended M = G (—extended — X extended)
M, s3 = G extended ? = G (extended — X —extended)

M, s1, 52,53 = G F extended

Note that: 9t [~ F G extended and 9}~ —F G extended !

LTL: Models

M, s |= ¢ if ¢ is satisfied on every path starting at s.
M |= ¢ if ¢ is satisfied on every path starting from the initial state.

=

= _)@ pull @ breaks @

% extended extended,
malfunction

Which of the states satisfies the following?

M, s1, 53 = X extended M, s3 = F G extended
M, sy, 53 E X Xextended DM, s1,5,,s3 & —F G extended
M, s1, S, 53 = F extended M = G (—extended — X extended)

M, s3 = G extended M, s1, $2, 53 = G (extended — X —extended)

M, s1, 52,53 = G F extended

Note that: 9t [~ F G extended and 9}~ —F G extended !

LTL: Equivalence of Formulas

LTL formulas ¢ and 1 are semantically equivalent, denoted by ¢ = v, if
they are true for the same paths

LTL: Equivalence of Formulas

LTL formulas ¢ and 1 are semantically equivalent, denoted by ¢ = v, if
they are true for the same paths

Which of the following are semantically equivalent?

X (pVY) =X VX FFo=F¢
X (dAP) =X dAX D GGhd=G¢
F(OAY)=FdAF FGo=GF ¢
F(oVe)=F ¢ VF ~F ¢ =G—o
G(oAY)=GoAFY ~G¢=F-¢
G(oVY)=GoVFy Fo=oVX(Fo)
U(@Ve)=(pUe)V(pUd) Go=¢AX(Go)

U(@@Ary)=(pU¢)n(pU) pU=0U(¢U)

LTL: Equivalence of Formulas

LTL formulas ¢ and 1 are semantically equivalent, denoted by ¢ = v, if
they are true for the same paths

Which of the following are semantically equivalent?

X (6VY) =X VXt FF¢=F¢
X (@A) =XdAXY GGop=Go
Eorrr=ForAFeb FGp=GF¢
F(oVe)=F o VFy “F$=G-¢
G(pAY)=GoAF Y -G ¢=F ¢
G(pvy)=GoVFy Fo=9¢VX(F9)

U@@vy)=(pUe)Vv(pUy) Gop=9oNX(G9)
U(@Ay)=(pU¢)n(pU) pU=0U(¢U)

LTL: Equivalence of Formulas

LTL formulas ¢ and 1 are semantically equivalent, denoted by ¢ = v, if
they are true for the same paths

Which of the following are semantically equivalent?

X(pVp)=X VXt FF¢=F¢
X (A1) =X¢AX GGop=Go
A=t b FGop=GF¢
F(pVe)=F¢VFy “F¢=G-o
G(pAY)=GOAFY ~G¢=F ¢
Gl =6t Fo=¢VX(F)
pU(@Vvey)=(pU¢)V(pU) Go=9NX(G9)

pU (@A) =(pU¢)A(pU) pU=0¢U(¢U)

LTL: Equivalence of Formulas

LTL formulas ¢ and 1 are semantically equivalent, denoted by ¢ = v, if
they are true for the same paths

Which of the following are semantically equivalent?

X(pV)=XopVX FFo=F¢
X(pAY)=XdAXY GGp=Gog
Elorry=TorF FG¢o=GFo¢
F(pVy)=FodpVFy -Fop=G-¢
GlpAY)=GopAFY -Gp=F ¢
Gy =67 Fo=0¢VX(F¢)
(¢V1/J) (pU o)V (pUr) Gop=9AX(G9)

giy'w — (7t et $Ud=0U(sU)

LTL: Equivalence of Formulas

LTL formulas ¢ and 1 are semantically equivalent, denoted by ¢ = v, if
they are true for the same paths

Which of the following are semantically equivalent?

X(pV)=XopVX FFo=F¢
X(pAY)=XdAXY GGp=Gog
B =y EGo=t6Fs
F(pVy)=FodpVFy -Fop=G-¢
GlpAY)=GopAFY -Gp=F ¢
G = Fo=oVX(Fo)
(fz»vw) (pUG)V(pU) Go=odAX(Go)

giy'w — (7t et $Ud=0U(sU)

Mutual Exclusion

» multiple processes

» a shared resource that can only be used by one process at a time

process Q shared resource process P

Mutual Exclusion

» multiple processes

» a shared resource that can only be used by one process at a time

process Q shared resource process P

Q P
non critical non critical
Cq critical section Cp critical section
non critical non critical

To solve conflicts: processes agree on a negotiation protocol.

» mutual exclusion: never more than one process in the critical section

Mutual Exclusion

» multiple processes

» a shared resource that can only be used by one process at a time

process Q shared resource process P

Q P
non critical non critical
Cq critical section Cp critical section
non critical non critical

To solve conflicts: processes agree on a negotiation protocol.
» mutual exclusion: never more than one process in the critical section
G —(Cq N Cp)

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever

wait for free =1

p2: free = 0
Cp: critical section
p4: free = 1

loop forever

wait for free = 1

q2: free = 0
Cq: critical section
q4: free = 1

pl,ql,1l

For such a program we compute the state space:

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever
pl: wait for free = 1
free =0
Cp: critical section
p4: free = 1

loop forever

wait for free = 1

q2: free = 0
Cq: critical section
q4: free = 1

plgl,l — p2,ql1l

For such a program we compute the state space:

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever
pl: wait for free = 1

p2: free = 0
critical section
p4: free = 1

loop forever

wait for free = 1

q2: free = 0
Cq: critical section
q4: free = 1

For such a program we compute the state space:

plgqll — p29qll — Cp,ql,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever
pl: wait for free = 1
P2: free = 0
Cp: critical section

free =1

loop forever

wait for free = 1

q2: free = 0
Cq: critical section
q4: free = 1

For such a program we compute the state space:

plgll — p29ll — Cp,ql,0 — p4ql,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever

wait for free =1

p2: free = 0
Cp: critical section
p4: free = 1

loop forever

wait for free = 1

q2: free = 0
Cq: critical section
q4: free = 1

For such a program we compute the state space:

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P Q
loop forever loop forever
[PL] wait for free = 1 ql: wait for free = 1
P2: free = 0 free = 0
Cp: critical section Cq: critical section
p4: free = 1 q4: free = 1

For such a program we compute the state space:

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0
d
pl,g2,1

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P Q
loop forever loop forever
wait for free = 1 ql: wait for free = 1
pP2: free = 0 q2: free = 0
Cp: critical section critical section
p4: free = 1 q4: free = 1

For such a program we compute the state space:

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0
{
pl,g2,1
N
pl,CQ,O

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever

wait for free =1

loop forever
ql: wait for free = 1

p2: free = 0 q2: free = 0
Cp: critical section Cq: critical section
P4 free = 1 free = 1

For such a program we compute the state space:

d
pl,g2,1

N
pl,CQ,O

N
pl,q4,0

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever

wait for free =1

loop forever

wait for free = 1

P2: free = 0 q2: free = 0
Cp: critical section Cq: critical section
p4: free = 1 q4: free = 1

For such a program we compute the state space:

d
pl,g2,1

N
pl,CQ,O

N
pl,q4,0

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever
pl: wait for free = 1

loop forever

wait for free = 1

q2: free = 0
Cq: critical section
q4: free = 1

For such a program we compute the state space:

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0

free =0
Cp: critical section
p4: free = 1
1
pl,g2,1
N
pl,CQ,O
N

pl,q4,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever
pl: wait for free = 1
free =0
Cp: critical section
p4: free = 1

loop forever
ql: wait for free = 1

free = 0
Cq: critical section
q4: free = 1

For such a program we compute the state space:

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0

{ {
pl,g2,1 p2,92,1
N
pl,CQ,O
A3
pl,q4,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P Q
loop forever loop forever
pl: wait for free = 1 ql: wait for free = 1
[p2] free = 0 q2: free = 0
Cp: critical section critical section
p4: free = 1 q4: free =1
For such a program we compute the state space:
/\
plgll — p29ll — Cp,ql,0 — p4,ql,0
1 1
pl,g2,1 p2,q2,1
N N
pl,CQ,O p2,CQ,0
N

pl,q4,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever
pl: wait for free = 1

loop forever
ql: wait for free = 1

q2: free = 0
critical section
q4: free = 1

For such a program we compute the state space:

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0

p2: free = 0
critical section
p4: free = 1
1 1
pl,g2,1 p2,92,1
1 d
pl,CQ,O
N

pl,q4,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever
pl: wait for free = 1

loop forever
ql: wait for free = 1

q2: free = 0
critical section
q4: free = 1

For such a program we compute the state space:

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0

1

p2,Cq.0 —)-

p2: free = 0
critical section
p4: free = 1
{ {
plg2,1 — p2,g2,1 — C(Cp,g2,0
A3 A3
pl,CQ,O
A3

pl,q4,0

Mutual Exclusion: Attempt 1

» boolean variable free = 1

P

Q

loop forever
pl: wait for free = 1

p2: free = 0
critical section
p4: free = 1

loop forever
ql: wait for free = 1

q2: free = 0
critical section
q4: free = 1

For such a program we compute the state space:

4/\

plgll — p29ll — Cp,ql,0 — p4,ql,0

{

pl,g2,1 p2,92,1 — (Cp,g2,0 — p4,92,0
N N N N

pl,Cq.0 p2,Co,0 — -—) p4,Cp0 ------
N N 4 N

pl,q4,0 p2,94,0 — Cp,g4,0 — p4,94,0

]
1
v

Model Checking

@ Formalize the system design

R, P
@ Formalize the validation requirements %%% e
o s B
. . > VW @
© Validate: system meets requirements o SN
5. .

\
System design 1
|
|
|

Promela or Embedded C

\
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
I

Mutual Exclusion: Peterson

» boolean variables x =0, y =0,t =0

P Q
loop forever loop forever
plix =1 ql:y =1
p2: turn = 1 q2: turn =0
p3:waitfory =0ort =0 g3:wait forx =0ort =1
Cp: critical section Cq: critical section
pdix =0 qgd:y =0

LTL: Applications

Safety properties
» “nothing bad ever happens”
G —(reactor temperature > 1000)

> invariant: “a is always false”

Liveness properties
> “something good will eventually happen”
G (ordered — F delivered)
» termination: “the system will eventually terminate”

> response: “if action a occurs then b eventually will occur”

Deadlock freeness
» deadlock state: “a state where no actions are possible”
» no deadlocks: there is always some next state

G (—terminated — X T)

Industrial Case Studies |

Figure: After Flood Disaster (1953), Maeslant Barrier (Maeslantkering)

Industrial Case Studies: Flood Control

Verification of the interface between BOS and BESW:

Beslis- en Ondersteunend Systeem (BOS)
BEsturingsSysteem Waterweg (BESW)
BOS takes the decision to move the barrier
BESW performs this task

vV v .vvY

Even deadlocks were found in BESW!

Industrial Case Studies Il

Figure: NASA Mission Critical Software: Cassini, Mars Rovers, Deep Impact

Industrial Case Studies Il

State Space Explosion

> Assume A, Ay, ...are a processes each having 10 states

State Space Explosion

» Assume A, Ay, ...are a processes each having 10 states
» Then A; and A, together have 100 states.

State Space Explosion

» Assume A, Ay, ...are a processes each having 10 states
» Then A; and A, together have 100 states.
» Then Ay, ..., A, together have 10" states.

State Space Explosion

» Assume A, Ay, ...are a processes each having 10 states
» Then A; and A, together have 100 states.
» Then Ay, ..., A, together have 10" states.

This is the state space explosion problem.

State Space Explosion

» Assume A, Ay, ...are a processes each having 10 states
» Then A; and A, together have 100 states.
» Then Ay, ..., A, together have 10" states.

This is the state space explosion problem.

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by:

pu=p|[T|-9|dANd|HEUS|EG|EX S
where p € Q

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by:

pu=p|[T|-9|dANd|HEUS|EGS|EX S
where p € Q

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by: (€Xists globally
pu=p|T|[=¢|dANd|PEUS|EGP|EX
where p € Q

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by: (€Xists globally
pu=p|T|[=¢|oANd|PEUS|EGP|EX S

where p € Q exists until @@@

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by: (€Xists globally
pu=p|T|[=¢|oANd|PEUS|EGP|EX S

where p € Q exists until @@@

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Q@ M, sEPEUY (¢ until ¢ holds on some path starting from s)

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by: (€Xists globally
pu=p|T|[=¢|oANd|PEUS|EGP|EX S

where p € Q exists until @@@

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Q@ M, sEPEUY (¢ until ¢ holds on some path starting from s)

iff there is a path s =s; — s, — ..., such that
for some i > 1, M, s; =1 and for all j < i, M,s; = ¢

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by: (€Xists globally
pu=p|T|[=¢|oANd|PEUS|EGP|EX S

where p € Q exists until @@@

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Q@ M, sEPEUY (¢ until ¢ holds on some path starting from s)

iff there is a path s =s; — s, — ..., such that
for some i > 1, M, s; =1 and for all j < i, M,s; = ¢

Q@ M,s=EG¢ (¢ holds globally on some path starting from s)

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by: (€Xists globally
pu=p|T|[=¢|oANd|PEUS|EGP|EX S

where p € Q exists until @@@

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Q@ M, sEPEUY (¢ until ¢ holds on some path starting from s)
iff there is a path s =s; — s, — ..., such that
for some i > 1, M, s; =1 and for all j < i, M,s; = ¢

Q@ M,s=EG¢ (¢ holds globally on some path starting from s)

iff there is a path s = s; — s, — ... such that
forall i>1, M s Eo

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by: (€Xists globally
pu=p|T|[=¢|oANd|PEUS|EGP|EX S

where p € Q exists until @@@

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Q@ M, sEPEUY (¢ until ¢ holds on some path starting from s)

iff there is a path s =s; — s, — ..., such that
for some i > 1, M, s; =1 and for all j < i, M,s; = ¢

Q@ M,s=EG¢ (¢ holds globally on some path starting from s)

iff there is a path s = s; — s, — ... such that
forall i>1, M s Eo

QO M,s=EX¢ (¢ holds in some next state)

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by: (€Xists globally
pu=p|T|[=¢|oANd|PEUS|EGP|EX S

where p € Q exists until @@@

The formula ¢ holds model 9t at state s, M, s |= ¢, is defined by:
Q asusual: Ms =T, M skEp, Ms=-o MsEd1 A b

Q@ M, sEPEUY (¢ until ¢ holds on some path starting from s)

iff there is a path s =s; — s, — ..., such that
for some i > 1, M, s; =1 and for all j < i, M,s; = ¢

Q@ M,s=EG¢ (¢ holds globally on some path starting from s)

iff there is a path s = s; — s, — ... such that
forall i>1, M s Eo

QO M,s=EX¢ (¢ holds in some next state)
iff (M, s;) |= ¢ for some s, such that s — s,

CTL: Extensions

Computation Tree Logic (CTL) is defined by:

¢u=p|T|-9|oANP|PEUG|EGH|EXP|PAUG|AGO[AX
where p € Q

CTL: Extensions

Computation Tree Logic (CTL) is defined by:

6:=p|T|~6|6n0| 6EUG|EGH|EX| 6 AU 6| AG S| AX 6
where p € 0

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally

6:=p|T|~6|6n0| 6EUG|EGH|EX| oAU 6| AG o |AX 6
where p € 0

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally
G:=p|T| =6 @N6|9EUG|EGH|EXS|dAUG|AGH|AX o

where p € Q [always until} [always next}

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally
G:=p|T| =6 @N6|9EUG|EGH|EXS|dAUG|AGH|AX o

where p € Q [always until} [always next}

Q M,sE=AGo (¢ holds globally on all paths starting from s)

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally
G:=p|T| =6 @N6|9EUG|EGH|EXS|dAUG|AGH|AX o

where p € Q [always until} [always next}

Q M,sE=AGo (¢ holds globally on all paths starting from s)

iff for all paths s =s; — s, — ... we have:
forall i>1, M s Eo

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally
G:=p|T| =6 @N6|9EUG|EGH|EXS|dAUG|AGH|AX o

where p € Q [always until} [always next}

Q M,sE=AGo (¢ holds globally on all paths starting from s)

iff for all paths s =s; — s, — ... we have:
forall i>1, M s Eo AG ¢ = —EF —¢

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally
G:=p|T| =6 @N6|9EUG|EGH|EXS|dAUG|AGH|AX o

where p € Q [always until} [always next}

Q M,sE=AGo (¢ holds globally on all paths starting from s)

iff for all paths s =s; — s, — ... we have:
forall i>1, M s Eo AG ¢ = —EF —¢

Q@ M,s=AX ¢ (¢ holds in all next states)

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally

¢:=p|T| 6|66 |6EVUG|EGH|EX | 9AUG|AGSH|AX
where p € Q [always until} [always next}

Q M,sE=AGo (¢ holds globally on all paths starting from s)

iff for all paths s =s; — s, — ... we have:

forall i>1, M s Eo AG ¢ = —EF —¢
Q@ M,s=AX ¢ (¢ holds in all next states)

iff (M, sp) |= ¢ for all s, such that s — s,

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally

¢:=p|T| 6|66 |6EVUG|EGH|EX | 9AUG|AGSH|AX
where p € Q [always until} [always next}

Q M,sE=AGo (¢ holds globally on all paths starting from s)

iff for all paths s =s; — s, — ... we have:
forall i>1, M s Eo AG ¢ = —EF —¢

Q@ M,s=AX ¢ (¢ holds in all next states)
iff (M, sp) |= ¢ for all s, such that s — s, AX ¢ = =EX —¢

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally
0:=p|T|-6|0NG|GEUG|EGH|EXG|PAUG|AGH|AX o

where p € Q [always until} [always next}

Q M,sE=AGo (¢ holds globally on all paths starting from s)
iff for all paths s =s; — s, — ... we have:

forall i>1, M s Eo AG ¢ = —EF —¢
Q@ M,s=AX ¢ (¢ holds in all next states)
iff (M, sp) |= ¢ for all s, such that s — s, AX ¢ = =EX —¢

Q@ MsEpAUY (¢ until ¢ holds on all paths starting from s)

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally

¢:=p|T| 6|66 |6EVUG|EGH|EX | 9AUG|AGSH|AX
where p € Q [always until} [always next}

Q M,sE=AGo (¢ holds globally on all paths starting from s)
iff for all paths s =s; — s, — ... we have:

forall i>1, M s Eo AG ¢ = —EF —¢
Q@ M,s=AX ¢ (¢ holds in all next states)
iff (M, sp) |= ¢ for all s, such that s — s, AX ¢ = =EX —¢

Q@ MsEpAUY (¢ until ¢ holds on all paths starting from s)

iff for all paths s =s; — s, — ... we have:
for some i > 1, M,s; =1 and for all j < i, M,s; = ¢

CTL: Extensions

Computation Tree Logic (CTL) is defined by: always globally

6:=p| T|-0| 6N SEUG|EGH|EX| oAU G| AGH|AX s
where p € Q [always until} [always next}

Q M,sE=AGo (¢ holds globally on all paths starting from s)
iff for all paths s =s; — s, — ... we have:

forall i>1, M s Eo AG ¢ = —EF —¢
Q@ M,s=AX ¢ (¢ holds in all next states)
iff (M, sp) |= ¢ for all s, such that s — s, AX ¢ = =EX —¢

Q@ MsEpAUY (¢ until ¢ holds on all paths starting from s)

iff for all paths s =s; — s, — ... we have:
for some i > 1, M,s; =1 and for all j < i, M,s; = ¢

¢ AU ¢ = (=9 EU (=¢ A 1)) A —EG —o

CTL: Examples

O Which of the states satisfies the following?
7 = AF t
/ \ ?E-EGr
?7EtEUgq
7 EXq
erQ§¥ z//m 7= AX g
?EEFgq

qar

CTL: Examples

O Which of the states satisfies the following?
M, s5, S3, S4 |: AF t
/ \ ? I: -EG r
?7EtEUgq
7 EXq

p,trx /p, 7= AX g

?EEFgq

qar

CTL: Examples

O Which of the states satisfies the following?
M, s5, S3, S4 |: AF t
/ \ m, S3 |: —-EG r
?7EtEUgq
7 EXq

p,trx /p, 7= AX g

?EEFgq

qar

CTL: Examples

O Which of the states satisfies the following?
M, s5, S3, S4 |: AF t
/ \ m, S3 |: —-EG r
mv 52,53, 54 ': t EU q
7 EXq

p,trx /p, 7= AX g

?EEFgq

qar

CTL: Examples

O Which of the states satisfies the following?
M, s5, S3, S4 |: AF t
/ \ m, S3 |: —-EG r
mv 52,53, 54 ': t EU q
SIR7 51,52,53 ': EX q

p,trx /p, 7= AX g

?EEFgq

qar

CTL: Examples

O Which of the states satisfies the following?
M, s5, S3, S4 |: AF t
/ \ m, S3 |: —-EG r
mv 52,53, 54 ': t EU q
SIR7 51,52,53 ': EX q

p,t, rx /P7 93?,52,53|:AXq

?EEFgq

qar

CTL: Examples

O Which of the states satisfies the following?
M, s5, S3, 54 ’: AF t
/ \ EDL S3 }: —-EG r
mv 52,53, 54 }: t EU q
M, s1,%,5 F EXq

p,t, r\ /P7 9)?,52,53}:AXq

9)?, 51,52, 53, 54 }Z EF q

qar

CTL: Examples

—()
/ r \ Which of the states satisfies the following?

7 = AG (EF p)
q \ P 2= AG (g r) AU p)
? = AG (EF (gATr))
/
©,

p

CTL: Examples

—()
/ r \ Which of the states satisfies the following?

M, s1, 52, 53, 54, 55 = AG (EF p)
?EAG((gVvr)AUp)
’ >\’ ’ ?EAG (ECII:\Eq A r))p
q,r
O,

p

CTL: Examples

—()
/ r \ Which of the states satisfies the following?

gﬁ, 51,52,53,54, S5 ’: AG (EF p)
q \ P M, s = AG ((qV r) AU p)
?EAG(EF (gATr))

o

p

CTL: Examples
CJ
()

@)
N
@/

p

/ r \m Which of the states satisfies the following?

@ M, 51,52, 53, 54, 55 = AG (EF p)

P M, s3 = AG ((g Vv r) AU p)
M, 55,54, = AG (EF (g A r))

CTL vs LTL

» a CTL formula necessitating E cannot be expressed in LTL
EXp

CTL vs LTL

» a CTL formula necessitating E cannot be expressed in LTL

EXp
p
» the CTL formula AF AG p cannot be expressed in LTL

o

p

o)

b@i}

CTL vs LTL

» a CTL formula necessitating E cannot be expressed in LTL
EXp
p
» the CTL formula AF AG p cannot be expressed in LTL
P P

» the LTL formula G F p — F g cannot be expressed in CTL

