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Overview

Linear temporal logic (LTL):
» describes properties of paths (individual executions)

» no modalities to reason about branching

Computation tree logic (CTL):
» is a branching-time logic
» time has a tree structure (multiple possible futures)

» has modalities for reasoning about the branching structure



Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is defined by:

pu=p|T|-9|oANS|dUP[X
where p € Q

LTL formulas have meaning on individual computation paths:

> let m =5, — 5 — 53 — ... a path; write 7 for 5; — sj41 — ...
The path 7 satisfies ¢, 7 |= ¢, is defined by:

Q@ 7 piff sy € V(p)
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Linear temporal logic (LTL) is defined by:
pu=p|T|-9|oANS|dUP[X
where p € Q
LTL formulas have meaning on individual computation paths:
> let m =5, — 5 — 53 — ... a path; write 7 for 5; — sj41 — ...
The path 7 satisfies ¢, 7 |= ¢, is defined by:
Q@ 7 piff s € V(p)

Q@ rET, nE-GiffrEg, TEGMAGIfTE@ and 1 = ¢
Q@ mEoUy (¢is true until ¢ is true)
e — Yo —— Yo SO ——P @D

¢ ¢ ¢ & U

formally: for some i > 1, n' =4 and for all j < i, 7/ |= ¢

Q@ "tEX¢ (¢is true in the next moment in time)
@ — Yo —— S0 DO ——— D@D

¢
formally: 72 = ¢
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Linear temporal logic (LTL) is defined by: globally
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The modalities F and G can be defined:
F=TU¢o

Binding strength: —, X ,F ,G stronger than U than A,V than —, <
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LTL: Examples

» F G ¢: from some point on, ¢ holds forever

e — Yo —S@-----) SO0 ——30——3@-ararD>

o 6 ¢ @

» GF ¢: always eventually ¢ (in every suffix, at some point ¢ holds)

@ ——> @] >0 —— 3@ DO D @ > @D

¢ ¢ ¢
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loop forever
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Model Checking

@ Formalize the system design
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@ Formalize the validation requirements %%% e
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Mutual Exclusion: Peterson

» boolean variables x =0, y =0,t =0

P Q
loop forever loop forever
plix =1 ql:y =1
p2: turn = 1 q2: turn =0
p3:waitfory =0ort =0 g3:wait forx =0ort =1
Cp: critical section Cq: critical section
pdix =0 qgd:y =0




LTL: Applications

Safety properties
» “nothing bad ever happens”
G —(reactor temperature > 1000)

> invariant: “a is always false”

Liveness properties
> “something good will eventually happen”
G (ordered — F delivered)
» termination: “the system will eventually terminate”

> response: “if action a occurs then b eventually will occur”

Deadlock freeness
» deadlock state: “a state where no actions are possible”
» no deadlocks: there is always some next state

G (—terminated — X T)



Industrial Case Studies |

Figure: After Flood Disaster (1953), Maeslant Barrier (Maeslantkering)



Industrial Case Studies: Flood Control

Verification of the interface between BOS and BESW:

Beslis- en Ondersteunend Systeem (BOS)
BEsturingsSysteem Waterweg (BESW)
BOS takes the decision to move the barrier
BESW performs this task

vV v .vvY

Even deadlocks were found in BESW!
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Figure: NASA Mission Critical Software: Cassini, Mars Rovers, Deep Impact
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Computation Tree Logic (CTL) is defined by: always globally
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M, s5, S3, 54 ’: AF t
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/ r \m Which of the states satisfies the following?

@ M, 51,52, 53, 54, 55 = AG (EF p)

P M, s3 = AG ((g Vv r) AU p)
M, 55,54, = AG (EF (g A r))
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» a CTL formula necessitating E cannot be expressed in LTL
EXp
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» the CTL formula AF AG p cannot be expressed in LTL
P P

» the LTL formula G F p — F g cannot be expressed in CTL






