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Overview

Linear temporal logic (LTL):

I describes properties of paths (individual executions)

I no modalities to reason about branching

Computation tree logic (CTL):

I is a branching-time logic

I time has a tree structure (multiple possible futures)

I has modalities for reasoning about the branching structure



Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is defined by:

φ ::= p | > | ¬φ | φ ∧ φ | φ U φ

until

| X φ

next

where p ∈ Ω

LTL formulas have meaning on individual computation paths:
I let π = s1 → s2 → s3 → . . . a path; write πi for si → si+1 → . . .

The path π satisfies φ, π |= φ, is defined by:
1 π |= p iff s1 ∈ V (p)
2 π |= >; π |= ¬φ iff π 6|= φ; π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

3 π |= φ U ψ (φ is true until ψ is true)

φ φ φ φ ψ

formally: for some i ≥ 1, πi |= ψ and for all j < i , πj |= φ

4 π |= X φ (φ is true in the next moment in time)

φ
formally: π2 |= φ
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LTL: Extended

Linear temporal logic (LTL) is defined by:

φ ::= p | > | ¬φ | φ ∧ φ | φ U φ

until

| X φ

next

| F φ

finally

| G φ

globally

where p ∈ Ω

1 π |= G φ iff for all i ≥ 1, πi |= φ

φ φ φ φ φ φ

2 π |= F φ iff for some i ≥ 1, πi |= φ

φ

The modalities F and G can be defined:

F = > U φ

G φ = ¬F ¬φ = ¬(> U ¬φ)

Binding strength: ¬,X ,F ,G stronger than U than ∧,∨ than →,↔
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LTL: Examples

I F G φ :

from some point on, φ holds forever

φ φ φ φ

I G F φ : always eventually φ (in every suffix, at some point φ holds)

φ φ φ
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LTL: Models

M, s |= φ if φ is satisfied on every path starting at s.
M |= φ if φ is satisfied on every path starting from the initial state.

s1 s2

extended

s3

extended,
malfunction

pull breaks

release

Which of the states satisfies the following?

M, s1, s3

? |= X extended

M, s3

? |= F G extended

M, s2, s3

? |= X X extended

M, s1, s2, s3

? |= ¬F G extended

M, s1, s2, s3

? |= F extended

M

? |= G (¬extended→ X extended)

M, s3

? |= G extended

M, s1, s2, s3

? |= G (extended→ X ¬extended)

M, s1, s2, s3

? |= G F extended

Note that: M 6|= F G extended and M 6|= ¬F G extended !
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LTL: Equivalence of Formulas

LTL formulas φ and ψ are semantically equivalent, denoted by φ ≡ ψ, if
they are true for the same paths

Which of the following are semantically equivalent?

X (φ ∨ ψ) ≡ X φ ∨ X ψ

X (φ ∧ ψ) ≡ X φ ∧ X ψ

F (φ ∧ ψ) ≡ F φ ∧ F ψ

F (φ ∨ ψ) ≡ F φ ∨ F ψ

G (φ ∧ ψ) ≡ G φ ∧ F ψ

G (φ ∨ ψ) ≡ G φ ∨ F ψ

ρ U (φ ∨ ψ) ≡ (ρ U φ) ∨ (ρ U ψ)

ρ U (φ ∧ ψ) ≡ (ρ U φ) ∧ (ρ U ψ)

F F φ ≡ F φ

G G φ ≡ G φ

F G φ ≡ G F φ

¬F φ ≡ G ¬φ
¬G φ ≡ F ¬φ

F φ ≡ φ ∨ X (F φ)

G φ ≡ φ ∧ X (G φ)

φ U ψ ≡ φ U (φ U ψ)
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Mutual Exclusion

I multiple processes

I a shared resource that can only be used by one process at a time

process Pprocess Q shared resource

To solve conflicts: processes agree on a negotiation protocol.

I mutual exclusion: never more than one process in the critical section

G ¬(CQ ∧ CP)
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Mutual Exclusion: Attempt 1

I boolean variable free = 1

P

loop forever
p1: wait for free = 1
p2: free = 0
CP : critical section
p4: free = 1

Q

loop forever
q1: wait for free = 1
q2: free = 0
CQ : critical section
q4: free = 1

For such a program we compute the state space:

p1,q1,1

p2,q1,1 CP ,q1,0 p4,q1,0

p1,q2,1

p1,CQ ,0

p1,q4,0

p2,q2,1

p2,CQ ,0 CP ,CQ ,0

CP ,q2,0

p2,q4,0

p4,q2,0

CP ,q4,0

p4,CQ ,0

p4,q4,0
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Model Checking

1 Formalize the system design

2 Formalize the validation requirements

3 Validate: system meets requirements

System � Reqs

LTL

SPIN engine

Req1

Req2

...

Reqn

System design

Promela or Embedded C

Verification process



Mutual Exclusion: Peterson

I boolean variables x = 0, y = 0, t = 0

P

loop forever
p1: x = 1
p2: turn = 1
p3: wait for y = 0 or t = 0
CP : critical section
p4: x = 0

Q

loop forever
q1: y = 1
q2: turn = 0
q3: wait for x = 0 or t = 1
CQ : critical section
q4: y = 0



LTL: Applications

Safety properties
I “nothing bad ever happens”

G ¬(reactor temperature > 1000)

I invariant: “a is always false”

Liveness properties
I “something good will eventually happen”

G (ordered→ F delivered)

I termination: “the system will eventually terminate”

I response: “if action a occurs then b eventually will occur”

Deadlock freeness
I deadlock state: “a state where no actions are possible”

I no deadlocks: there is always some next state

G (¬terminated→ X >)



Industrial Case Studies I

Figure: After Flood Disaster (1953), Maeslant Barrier (Maeslantkering)



Industrial Case Studies: Flood Control

Verification of the interface between BOS and BESW:

I Beslis- en Ondersteunend Systeem (BOS)

I BEsturingsSysteem Waterweg (BESW)

I BOS takes the decision to move the barrier

I BESW performs this task

Even deadlocks were found in BESW!



Industrial Case Studies II

Figure: NASA Mission Critical Software: Cassini, Mars Rovers, Deep Impact



Industrial Case Studies III



State Space Explosion

I Assume A1, A2, . . . are a processes each having 10 states

I Then A1 and A2 together have 100 states.

I Then A1, . . . , An together have 10n states.

This is the state space explosion problem.
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Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by:

φ ::= p | > | ¬φ | φ ∧ φ | φ EU φ

exists until

| EG φ

exists globally

| EX φ

exists next

where p ∈ Ω

The formula φ holds model M at state s, M, s |= φ, is defined by:

1 as usual: M, s |= >, M, s |= p, M, s |= ¬φ, M, s |= φ1 ∧ φ2

2 M, s |= φ EU ψ (φ until ψ holds on some path starting from s)

iff there is a path s = s1 → s2 → . . ., such that
for some i ≥ 1, M, si |= ψ and for all j < i , M, sj |= φ

3 M, s |= EG φ (φ holds globally on some path starting from s)

iff there is a path s = s1 → s2 → . . . such that
for all i ≥ 1, M, si |= φ

4 M, s |= EX φ (φ holds in some next state)

iff (M, s2) |= φ for some s2 such that s → s2
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CTL: Extensions

Computation Tree Logic (CTL) is defined by:

φ ::= p | > | ¬φ | φ ∧ φ | φ EU φ | EG φ | EX φ | φ AU φ

always until

| AG φ

always globally

| AX φ

always next

where p ∈ Ω

1 M, s |= AG φ (φ holds globally on all paths starting from s)

iff for all paths s = s1 → s2 → . . . we have:
for all i ≥ 1, M, si |= φ AG φ = ¬EF ¬φ

2 M, s |= AX φ (φ holds in all next states)

iff (M, s2) |= φ for all s2 such that s → s2 AX φ = ¬EX ¬φ

3 M, s |= φ AU ψ (φ until ψ holds on all paths starting from s)

iff for all paths s = s1 → s2 → . . . we have:
for some i ≥ 1, M, si |= ψ and for all j < i , M, sj |= φ

φ AU ψ = ¬(¬ψ EU (¬φ ∧ ¬ψ)) ∧ ¬EG ¬ψ
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