
Propositional Dynamic Logic

CS 112: Lecture Notes

November 23, 2010

My class notes are largely based on the presentation in the book, Dynamic Logic (2000), by
David Harel, Dexter Kozen, and Jerzy Tiuryn. This is a wonderful book, and very clearly lays out
the motivation for the expressiveness present in dynamic logic. For the notes, I’ve reprinted parts
of their earlier article from 1984, much of which is reworked in the 2000 book. I am also referencing
the forthcoming article by Jess and myself, which deals with a first-order fragment of DL, focusing
on motion predicates in language. See the webpage for that article.

1

114 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

PREFACE

Dynamic Logic () is a formal system for reasoning about programs. Tradition-
ally, this has meant formalizing correctness specifications and proving rigorously
that those specifications are met by a particular program. Other activities fall into
this category as well: determining the equivalence of programs, comparing the
expressive power of various programming constructs, synthesizing programs from
specifications, etc. Formal systems too numerous to mention have been proposed
for these purposes, each with its own peculiarities.

can be described as a blend of three complementary classical ingredients:
first-order predicate logic, modal logic, and the algebra of regular events. These
components merge to form a system of remarkable unity that is theoretically rich
as well as practical.
The name Dynamic Logic emphasizes the principal feature distinguishing it

from classical predicate logic. In the latter, truth is static: the truth value of a
formula is determined by a valuation of its free variables over some structure.
The valuation and the truth value of it induces are regarded as immutable; there
is no formalism relating them to any other valuations or truth values. In Dynamic
Logic, there are explicit syntactic constructs called programs whose main role is
to change the values of variables, thereby changing the truth values of formulas.
For example, the program over the natural numbers changes the truth
value of the formula “ is even”.
Such changes occur on a metalogical level in classical predicate logic. For

example, in Tarski’s definition of truth of a formula, if is a
valuation of variables over the natural numbers , then the formula
is defined to be true under the valuation iff there exists an such that the
formula is true under the valuation , where agrees with
everywhere except , on which it takes the value . This definition involves a
metalogical operation that produces from for all possible values .
This operation becomes explicit in in the form of the program , called a
nondeterministic orwildcard assignment. This is a rather unconventional program,
since it is not effective; however, it is quite useful as a descriptive tool. A more
conventional way to obtain a square root of , if it exists, would be the program

while do (1)

In , such programs are first-class objects on a par with formulas, complete with
a collection of operators for forming compound programs inductively from a basis
of primitive programs. To discuss the effect of the execution of a program on the
truth of a formula , uses a modal construct , which intuitively states, “It
is possible to execute starting from the current state and halt in a state satisfying
.” There is also the dual construct , which intuitively states, “If halts when
started in the current state, then it does so in a state satisfying .” For example, the
first-order formula is equivalent to the formula . In
order to instantiate the quantifier effectively, wemight replace the nondeterministic

DYNAMIC LOGIC 115

assignment inside the with the while program (1); over , the two formulas
would be equivalent.
Apart from the obvious heavy reliance on classical logic, computability the-

ory and programming, the subject has its roots in the work of [Thiele, 1966] and
[Engeler, 1967] in the late 1960’s, who were the first to advance the idea of for-
mulating and investigating formal systems dealing with properties of programs in
an abstract setting. Research in program verification flourished thereafter with the
work of many researchers, notably [Floyd, 1967], [Hoare, 1969], [Manna, 1974],
and [Salwicki, 1970]. The first precise development of a -like system was car-
ried out by [Salwicki, 1970], following [Engeler, 1967]. This system was called
Algorithmic Logic. A similar system, called Monadic Programming Logic, was
developed by [Constable, 1977]. Dynamic Logic, which emphasizes the modal
nature of the program/assertion interaction, was introduced by [Pratt, 1976].
Background material on mathematical logic, computability, formal languages

and automata, and program verification can be found in [Shoenfield, 1967] (logic),
[Rogers, 1967] (recursion theory), [Kozen, 1997a] (formal languages, automata,
and computability), [Keisler, 1971] (infinitary logic), [Manna, 1974] (programver-
ification), and [Harel, 1992; Lewis and Papadimitriou, 1981; Davis et al., 1994]
(computability and complexity). Much of this introductory material as it pertains
to can be found in the authors’ text [Harel et al., 2000].
There are by now a number of books and survey papers treating logics of

programs, program verification, and Dynamic Logic [Apt and Olderog, 1991;
Backhouse, 1986; Harel, 1979; Harel, 1984; Parikh, 1981; Goldblatt, 1982; Gold-
blatt, 1987; Knijnenburg, 1988; Cousot, 1990; Emerson, 1990; Kozen and Tiuryn,
1990]. In particular, much of this chapter is an abbreviated summary of material
from the authors’ text [Harel et al., 2000], to which we refer the reader for a more
complete treatment. Full proofs of many of the theorems cited in this chapter can
be found there, as well as extensive introductory material on logic and complexity
along with numerous examples and exercises.

116 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

1 REASONING ABOUT PROGRAMS

1.1 Programs
For us, a program is a recipe written in a formal language for computing desired
output data from given input data.
EXAMPLE 1. The following program implements the Euclidean algorithm for
calculating the greatest common divisor (gcd) of two integers. It takes as input a
pair of integers in variables and and outputs their gcd in variable :

while do
begin

;
;

end

The value of the expression is the (nonnegative) remainder obtainedwhen
dividing by using ordinary integer division.
Programs normally use variables to hold input and output values and interme-

diate results. Each variable can assume values from a specific domain of compu-
tation, which is a structure consisting of a set of data values along with certain
distinguished constants, basic operations, and tests that can be performed on those
values, as in classical first-order logic. In the program above, the domain of ,
, and might be the integers along with basic operations including integer
division with remainder and tests including . In contrast with the usual use of
variables in mathematics, a variable in a program normally assumes different val-
ues during the course of the computation. The value of a variable may change
whenever an assignment is performed with on the left-hand side.
In order to make these notions precise, we will have to specify the program-

ming language and its semantics in a mathematically rigorous way. In this section
we give a brief introduction to some of these languages and the role they play in
program verification.

1.2 States and Executions
As mentioned above, a program can change the values of variables as it runs.
However, if we could freeze time at some instant during the execution of the pro-
gram, we could presumably read the values of the variables at that instant, and that
would give us an instantaneous snapshot of all information that we would need to
determine how the computation would proceed from that point. This leads to the
concept of a state—intuitively, an instantaneous description of reality.
Formally, we will define a state to be a function that assigns a value to each

program variable. The value for variable must belong to the domain associated

DYNAMIC LOGIC 117

with . In logic, such a function is called a valuation. At any given instant in time
during its execution, the program is thought to be “in” some state, determined by
the instantaneous values of all its variables. If an assignment statement is executed,
say , then the state changes to a new state in which the new value of is
2 and the values of all other variables are the same as they were before. We as-
sume that this change takes place instantaneously; note that this is a mathematical
abstraction, since in reality basic operations take some time to execute.
A typical state for the gcd program above is , where (say) the

first, second, and third components of the sequence denote the values assigned
to , , and respectively. The ellipsis “ ” refers to the values of the other
variables, which we do not care about, since they do not occur in the program.
A program can be viewed as a transformation on states. Given an initial (input)

state, the program will go through a series of intermediate states, perhaps eventu-
ally halting in a final (output) state. A sequence of states that can occur from the
execution of a program starting from a particular input state is called a trace.
As a typical example of a trace for the program above, consider the initial state

(we suppress the ellipsis). The program goes through the following
sequence of states:

The value of in the last (output) state is 3, the gcd of 15 and 27.
The binary relation consisting of the set of all pairs of the form (input state,

output state) that can occur from the execution of a program , or in other words,
the set of all first and last states of traces of , is called the input/output relation
of . For example, the pair is a member of the input/output
relation of the gcd program above, as is the pair . The
values of other variables besides , , and are not changed by the program.
These values are therefore the same in the output state as in the input state. In this
example, we may think of the variables and as the input variables, as the
output variable, and as a work variable, although formally there is no distinction
between any of the variables, including the ones not occurring in the program.

1.3 Programming Constructs

In subsequent sections we will consider a number of programming constructs. In
this section we introduce some of these constructs and define a few general classes
of languages built on them.
In general, programs are built inductively from atomic programs and tests using

various program operators.

118 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

While Programs

A popular choice of programming language in the literature on is the family
of deterministic while programs. This language is a natural abstraction of familiar
imperative programming languages such as Pascal or C. Different versions can be
defined depending on the choice of tests allowed and whether or not nondetermin-
ism is permitted.
The language of while programs is defined inductively. There are atomic pro-

grams and atomic tests, as well as program constructs for forming compound pro-
grams from simpler ones.
In the propositional version of Dynamic Logic (), atomic programs are sim-

ply letters from some alphabet. Thus abstracts away from the nature
of the domain of computation and studies the pure interaction between programs
and propositions. For the first-order versions of , atomic programs are simple
assignments , where is a variable and is a term. In addition, a nondeter-
ministic or wildcard assignment or nondeterministic choice construct may
be allowed.
Tests can be atomic tests, which for propositional versions are simply propo-

sitional letters , and for first-order versions are atomic formulas ,
where are terms and is an -ary relation symbol in the vocabulary
of the domain of computation. In addition, we include the constant tests and
. Boolean combinations of atomic tests are often allowed, although this adds no
expressive power. These versions of are called poor test.
More complicated tests can also be included. These versions of are some-

times called rich test. In rich test versions, the families of programs and tests are
defined by mutual induction.
Compound programs are formed from the atomic programs and tests by induc-

tion, using the composition, conditional, and while operators. Formally, if is a
test and and are programs, then the following are programs:

if then else

while do .

We can also parenthesize with begin end where necessary. The gcd program
of Example 1 above is an example of a while program.
The semantics of these constructs is defined to correspond to the ordinary oper-

ational semantics familiar from common programming languages.

Regular Programs

Regular programs are more general than while programs, but not by much. The
advantage of regular programs is that they reduce the relatively more complicated

DYNAMIC LOGIC 119

while program operators to much simpler constructs. The deductive system be-
comes comparatively simpler too. They also incorporate a simple form of nonde-
terminism.
For a given set of atomic programs and tests, the set of regular programs is

defined as follows:

(i) any atomic program is a program

(ii) if is a test, then is a program

(iii) if and are programs, then is a program;

(iv) if and are programs, then is a program;

(v) if is a program, then is a program.

These constructs have the following intuitive meaning:
(i) Atomic programs are basic and indivisible; they execute in a single step.

They are called atomic because they cannot be decomposed further.

(ii) The program tests whether the property holds in the current state. If
so, it continues without changing state. If not, it blocks without halting.

(iii) The operator is the sequential composition operator. The program
means, “Do , then do .”

(iv) The operator is the nondeterministic choice operator. The program
means, “Nondeterministically choose one of or and execute it.”

(v) The operator is the iteration operator. The program means, “Execute
some nondeterministically chosen finite number of times.”

Keep in mind that these descriptions are meant only as intuitive aids. A formal
semantics will be given in Section 2.2, in which programs will be interpreted as
binary input/output relations and the programming constructs above as operators
on binary relations.
The operators may be familiar from automata and formal language

theory (see [Kozen, 1997a]), where they are interpreted as operators on sets of
strings over a finite alphabet. The language-theoretic and relation-theoretic se-
mantics share much in common; in fact, they have the same equational theory, as
shown in [Kozen, 1994a].
The operators of deterministic while programs can be defined in terms of the

regular operators:

if then else (2)

while do (3)

The class of while programs is equivalent to the subclass of the regular programs
in which the program operators , , and are constrained to appear only in these
forms.

120 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

Recursion

Recursion can appear in programming languages in several forms. Two such man-
ifestations are recursive calls and stacks. Under certain very general conditions,
the two constructs can simulate each other. It can also be shown that recursive
programs and while programs are equally expressive over the natural numbers,
whereas over arbitrary domains, while programs are strictly weaker. While pro-
grams correspond to what is often called tail recursion or iteration.

R.E. Programs

A finite computation sequence of a program , or seq for short, is a finite-length
string of atomic programs and tests representing a possible sequence of atomic
steps that can occur in a halting execution of . Seqs are denoted . The set
of all seqs of a program is denoted . We use the word “possible” loosely—

is determined by the syntax of alone. Because of tests that evaluate to
false, may contain seqs that are never executed under any interpretation.
The set is a subset of , where is the set of atomic programs and

tests occurring in . Forwhile programs, regular programs, or recursive programs,
we can define the set formally by induction on syntax. For example, for
regular programs,

an atomic program or test

where

For example, if is an atomic program and an atomic formula, then the pro-
gram

while do

has as seqs all strings of the form

DYNAMIC LOGIC 121

for all . Note that each seq of a program is itself a program, and

While programs and regular programs give rise to regular sets of seqs, and
recursive programs give rise to context-free sets of seqs. Taking this a step further,
we can define an r.e. program to be simply a recursively enumerable set of seqs.
This is the most general programming language we will consider in the context of
; it subsumes all the others in expressive power.

Nondeterminism

We should say a few words about the concept of nondeterminism and its role in
the study of logics and languages, since this concept often presents difficulty the
first time it is encountered.
In some programming languages we will consider, the traces of a program need

not be uniquely determined by their start states. When this is possible, we say
that the program is nondeterministic. A nondeterministic program can have both
divergent and convergent traces starting from the same input state, and for such
programs it does not make sense to say that the program halts on a certain input
state or that it loops on a certain input state; there may be different computations
starting from the same input state that do each.
There are several concrete ways nondeterminism can enter into programs. One

construct is the nondeterministic or wildcard assignment . Intuitively, this
operation assigns an arbitrary element of the domain to the variable , but it is not
determined which one.1 Another source of nondeterminism is the unconstrained
use of the choice operator in regular programs. A third source is the iteration
operator in regular programs. A fourth source is r.e. programs, which are just
r.e. sets of seqs; initially, the seq to execute is chosen nondeterministically. For
example, over , the r.e. program

is equivalent to the regular program

Nondeterministic programs provide no explicit mechanism for resolving the
nondeterminism. That is, there is no way to determine which of many possi-
ble next steps will be taken from a given state. This is hardly realistic. So why
study nondeterminism at all if it does not correspond to anything operational? One
good answer is that nondeterminism is a valuable tool that helps us understand the
expressiveness of programming language constructs. It is useful in situations in

1This construct is often called random assignment in the literature. This terminology is misleading,
because it has nothing at all to do with probability.

122 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

which we cannot necessarily predict the outcome of a particular choice, but we
may know the range of possibilities. In reality, computations may depend on in-
formation that is out of the programmer’s control, such as input from the user or
actions of other processes in the system. Nondeterminism is useful in modeling
such situations.
The importance of nondeterminism is not limited to logics of programs. Indeed,

the most important open problem in the field of computational complexity theory,
the P=NP problem, is formulated in terms of nondeterminism.

1.4 Program Verification
Dynamic Logic and other program logics are meant to be useful tools for facilitat-
ing the process of producing correct programs. One need only look at the miasma
of buggy software to understand the dire need for such tools. But before we can
produce correct software, we need to know what it means for it to be correct. It is
not good enough to have some vague idea of what is supposed to happen when a
program is run or to observe it running on some collection of inputs. In order to
apply formal verification tools, we must have a formal specification of correctness
for the verification tools to work with.
In general, a correctness specification is a formal description of how the pro-

gram is supposed to behave. A given program is correct with respect to a correct-
ness specification if its behavior fulfills that specification. For the gcd program of
Example 1, the correctness might be specified informally by the assertion

If the input values of and are positive integers and , respectively,
then

(i) the output value of is the gcd of and , and
(ii) the program halts.

Of course, in order to work with a formal verification system, these properties must
be expressed formally in a language such as first-order logic.
The assertion (ii) is part of the correctness specification because programs do

not necessarily halt, but may produce infinite traces for certain inputs. A finite
trace, as for example the one produced by the gcd program above on input state
(15,27,0), is called halting, terminating, or convergent. Infinite traces are called
looping or divergent. For example, the program

while do

loops on input state , producing the infinite trace

Dynamic Logic can reason about the behavior of a program that is manifested
in its input/output relation. It is not well suited to reasoning about program behav-
ior manifested in intermediate states of a computation (although there are close

DYNAMIC LOGIC 123

relatives, such as Process Logic and Temporal Logic, that are). This is not to say
that all interesting program behavior is captured by the input/output relation, and
that other types of behavior are irrelevant or uninteresting. Indeed, the restriction
to input/output relations is reasonable only when programs are supposed to halt
after a finite time and yield output results. This approach will not be adequate for
dealing with programs that normally are not supposed to halt, such as operating
systems.
For programs that are supposed to halt, correctness criteria are traditionally

given in the form of an input/output specification consisting of a formal relation
between the input and output states that the program is supposed to maintain, along
with a description of the set of input states on which the program is supposed to
halt. The input/output relation of a program carries all the information necessary to
determine whether the program is correct relative to such a specification. Dynamic
Logic is well suited to this type of verification.
It is not always obvious what the correctness specification ought to be. Some-

times, producing a formal specification of correctness is as difficult as producing
the program itself, since both must be written in a formal language. Moreover,
specifications are as prone to bugs as programs. Why bother then? Why not just
implement the program with some vague specification in mind?
There are several good reasons for taking the effort to produce formal specifi-

cations:

1. Often when implementing a large program from scratch, the programmer
may have been given only a vague idea of what the finished product is sup-
posed to do. This is especially true when producing software for a less
technically inclined employer. There may be a rough informal description
available, but the minor details are often left to the programmer. It is very
often the case that a large part of the programming process consists of taking
a vaguely specified problem and making it precise. The process of formulat-
ing the problem precisely can be considered a definition of what the program
is supposed to do. And it is just good programming practice to have a very
clear idea of what we want to do before we start doing it.

2. In the process of formulating the specification, several unforeseen cases may
become apparent, for which it is not clear what the appropriate action of the
program should be. This is especially true with error handling and other
exceptional situations. Formulating a specification can define the action of
the program in such situations and thereby tie up loose ends.

3. The process of formulating a rigorous specification can sometimes suggest
ideas for implementation, because it forces us to isolate the issues that drive
design decisions. When we know all the ways our data are going to be
accessed, we are in a better position to choose the right data structures that
optimize the tradeoffs between efficiency and generality.

124 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

4. The specification is often expressed in a language quite different from the
programming language. The specification is functional—it tells what the
program is supposed to do—as opposed to imperative—how to do it. It is
often easier to specify the desired functionality independent of the details of
how it will be implemented. For example, we can quite easily express what
it means for a number to be the gcd of and in first-order logic without
even knowing how to compute it.

5. Verifying that a program meets its specification is a kind of sanity check. It
allows us to give two solutions to the problem—once as a functional speci-
fication, and once as an algorithmic implementation—and lets us verify that
the two are compatible. Any incompatibilities between the program and
the specification are either bugs in the program, bugs in the specification,
or both. The cycle of refining the specification, modifying the program to
meet the specification, and reverifying until the process converges can lead
to software in which we have much more confidence.

Partial and Total Correctness

Typically, a program is designed to implement some functionality. As mentioned
above, that functionality can often be expressed formally in the form of an in-
put/output specification. Concretely, such a specification consists of an input con-
dition or precondition and an output condition or postcondition . These are
properties of the input state and the output state, respectively, expressed in some
formal language such as the first-order language of the domain of computation.
The program is supposed to halt in a state satisfying the output condition when-
ever the input state satisfies the input condition. We say that a program is partially
correct with respect to a given input/output specification if, whenever the
program is started in a state satisfying the input condition , then if and when it
ever halts, it does so in a state satisfying the output condition . The definition of
partial correctness does not stipulate that the program halts; this is what we mean
by partial.
A program is totally correct with respect to an input/output specification if

it is partially correct with respect to that specification; and

it halts whenever it is started in a state satisfying the input condition .

The input/output specification imposes no requirements when the input state
does not satisfy the input condition —the program might as well loop infinitely
or erase memory. This is the “garbage in, garbage out” philosophy. If we really
do care what the program does on some of those input states, then we had better
rewrite the input condition to include them and say formally what we want to
happen in those cases.
For example, in the gcd program of Example 1, the output condition might

be the condition (i) stating that the output value of is the gcd of the input values

DYNAMIC LOGIC 125

of and . We can express this completely formally in the language of first-order
number theory. We may try to start off with the input specification (true);
that is, no restrictions on the input state at all. Unfortunately, if the initial value
of is 0 and is negative, the final value of will be the same as the initial
value, thus negative. If we expect all gcds to be positive, this would be wrong.
Another problematic situation arises when the initial values of and are both 0;
in this case the gcd is not defined. Therefore, the program as written is not partially
correct with respect to the specification .
We can remedy the situation by providing an input specification that rules out

these troublesome input values. We can limit the input states to those in which
and are both nonnegative and not both zero by taking the input specification

The gcd program of Example 1 above would be partially correct with respect to the
specification . It is also totally correct, since the program halts on all inputs
satisfying .
Perhaps we want to allow any input in which not both and are zero. In that

case, we should use the input specification . But then
the program of Example 1 is not partially correct with respect to ; we must
amend the program to produce the correct (positive) gcd on negative inputs.

1.5 Exogenous and Endogenous Logics
There are two main approaches to modal logics of programs: the exogenous ap-
proach, exemplified by Dynamic Logic and its precursor Hoare Logic ([Hoare,
1969]), and the endogenous approach, exemplified by Temporal Logic and its pre-
cursor, the invariant assertions method of [Floyd, 1967]. A logic is exogenous if its
programs are explicit in the language. Syntactically, a Dynamic Logic program is
a well-formed expression built inductively from primitive programs using a small
set of program operators. Semantically, a program is interpreted as its input/output
relation. The relation denoted by a compound program is determined by the re-
lations denoted by its parts. This aspect of compositionality allows analysis by
structural induction.
The importance of compositionality is discussed in [van Emde Boas, 1978]. In

Temporal Logic, the program is fixed and is considered part of the structure over
which the logic is interpreted. The current location in the program during execu-
tion is stored in a special variable for that purpose, called the program counter,
and is part of the state along with the values of the program variables. Instead
of program operators, there are temporal operators that describe how the program
variables, including the program counter, change with time. Thus Temporal Logic
sacrifices compositionality for a less restricted formalism. We discuss Temporal
Logic further in Section 14.2.

126 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

2 PROPOSITIONAL DYNAMIC LOGIC ()

Propositional Dynamic Logic () plays the same role in Dynamic Logic that
classical propositional logic plays in classical predicate logic. It describes the
properties of the interaction between programs and propositions that are indepen-
dent of the domain of computation. Since is a subsystem of first-order ,
we can be sure that all properties of that we discuss in this section will also
be valid in first-order .
Since there is no domain of computation in , there can be no notion of

assignment to a variable. Instead, primitive programs are interpreted as arbitrary
binary relations on an abstract set of states . Likewise, primitive assertions are
just atomic propositions and are interpreted as arbitrary subsets of . Other than
this, no special structure is imposed.
This level of abstraction may at first appear too general to say anything of in-

terest. On the contrary, it is a very natural level of abstraction at which many
fundamental relationships between programs and propositions can be observed.
For example, consider the formula

(4)

The left-hand side asserts that the formula must hold after the execution of
program , and the right-hand side asserts that must hold after execution of
and so must . The formula (4) asserts that these two statements are equivalent.
This implies that to verify a conjunction of two postconditions, it suffices to verify
each of them separately. The assertion (4) holds universally, regardless of the
domain of computation and the nature of the particular , , and .
As another example, consider

(5)

The left-hand side asserts that after execution of the composite program ,
must hold. The right-hand side asserts that after execution of the program ,
must hold, which in turn says that after execution of , must hold. The formula
(5) asserts the logical equivalence of these two statements. It holds regardless of
the nature of , , and . Like (4), (5) can be used to simplify the verification of
complicated programs.
As a final example, consider the assertion

(6)

where is a primitive proposition symbol and and are programs. If this for-
mula is true under all interpretations, then and are equivalent in the sense that
they behave identically with respect to any property expressible in or any
formal system containing as a subsystem. This is because the assertion will

DYNAMIC LOGIC 127

hold for any substitution instance of (6). For example, the two programs

if then else
if then else

are equivalent in the sense of (6).

2.1 Syntax
Syntactically, is a blend of three classical ingredients: propositional logic,
modal logic, and the algebra of regular expressions. There are several versions
of , depending on the choice of program operators allowed. In this section
we will introduce the basic version, called regular . Variations of this basic
version will be considered in later sections.
The language of regular has expressions of two sorts: propositions or

formulas and programs . There are countably many atomic
symbols of each sort. Atomic programs are denoted and the set of all
atomic programs is denoted . Atomic propositions are denoted and
the set of all atomic propositions is denoted . The set of all programs is denoted
and the set of all propositions is denoted . Programs and propositions are built

inductively from the atomic ones using the following operators:

Propositional operators:

implication
falsity

Program operators:

composition
choice
iteration

Mixed operators:

necessity
test

The definition of programs and propositions is by mutual induction. All atomic
programs are programs and all atomic propositions are propositions. If are
propositions and are programs, then

propositional implication
propositional falsity
program necessity

128 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

are propositions and

sequential composition
nondeterministic choice
iteration
test

are programs. In more formal terms, we define the set of all programs and the
set of all propositions to be the smallest sets such that

if , then and

if , then , , and

if and , then

if then

Note that the inductive definitions of programs and propositions are inter-
twined and cannot be separated. The definition of propositions depends on the
definition of programs because of the construct , and the definition of pro-
grams depends on the definition of propositions because of the construct . Note
also that we have allowed all formulas as tests. This is the rich test version of .
Compound programs and propositions have the following intuitive meanings:

“It is necessary that after executing , is true.”

“Execute , then execute .”

“Choose either or nondeterministically and execute it.”

“Execute a nondeterministically chosen finite number of times
(zero or more).”

“Test ; proceed if true, fail if false.”

We avoid parentheses by assigning precedence to the operators: unary opera-
tors, including , bind tighter than binary ones, and binds tighter than . Thus
the expression

should be read

DYNAMIC LOGIC 129

Of course, parentheses can always be used to enforce a particular parse of an ex-
pression or to enhance readability. Also, under the semantics to be given in the
next section, the operators and will turn out to be associative, so we may write

and without ambiguity. We often omit the symbol and write
the composition as .
The propositional operators , , , , and can be defined from and in

the usual way.
The possibility operator is the modal dual of the necessity operator . It

is defined by

The propositions and are read “box ” and “diamond ,” re-
spectively. The latter has the intuitive meaning, “There is a computation of that
terminates in a state satisfying .”
One important difference between and is that implies that

terminates, whereas does not. Indeed, the formula asserts that no
computation of terminates, and the formula is always true, regardless of
.
In addition, we define

if then else

while do

repeat until while do

The programs and are the program that does nothing (no-op) and
the failing program, respectively. The ternary if-then-else operator and the binary
while-do operator are the usual conditional and while loop constructs found in
conventional programming languages. The constructs if- -fi and do- -od are the
alternative guarded command and iterative guarded command constructs, respec-
tively. The construct is the Hoare partial correctness assertion. We

130 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

will argue later that the formal definitions of these operators given above correctly
model their intuitive behavior.

2.2 Semantics
The semantics of comes from the semantics for modal logic. The structures
over which programs and propositions of are interpreted are called Kripke
frames in honor of Saul Kripke, the inventor of the formal semantics of modal
logic. A Kripke frame is a pair

where is a set of elements called states and is ameaning function
assigning a subset of to each atomic proposition and a binary relation on to
each atomic program. That is,

We will extend the definition of the function by induction below to give a
meaning to all elements of and such that

Intuitively, we can think of the set as the set of states satisfying the propo-
sition in the model , and we can think of the binary relation as the set
of input/output pairs of states of the program .
Formally, the meanings of and of are defined by

mutual induction on the structure of and . The basis of the induction, which
specifies the meanings of the atomic symbols and , is already given
in the specification of . The meanings of compound propositions and programs
are defined as follows.

if then

(7)
and

(8)

DYNAMIC LOGIC 131

The operator in (7) is relational composition. In (8), the first occurrence of
is the iteration symbol of , and the second is the reflexive transitive closure
operator on binary relations. Thus (8) says that the program is interpreted as
the reflexive transitive closure of .
We write and interchangeably, and say that satisfies in
, or that is true at state in . We may omit the and write when is
understood. The notation means that does not satisfy , or in other words
that . In this notation, we can restate the definition above equivalently
as follows:

implies

if then

and

or

and

and

The defined operators inherit their meanings from these definitions:

and

the identity relation

In addition, the if-then-else, while-do, and guarded commands inherit their se-
mantics from the above definitions, and the input/output relations given by the
formal semantics capture their intuitive operationalmeanings. For example, the re-
lation associated with the programwhile do is the set of pairs for which
there exist states , , such that , ,
and for , and .
This version of is usually called regular and the elements of are

called regular programs because of the primitive operators , ;, and , which are
familiar from regular expressions. Programs can be viewed as regular expressions

132 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

over the atomic programs and tests. In fact, it can be shown that if is an atomic
proposition symbol, then any two test-free programs are equivalent as reg-
ular expressions—that is, they represent the same regular set—if and only if the
formula is valid.
EXAMPLE 2. Let be an atomic proposition, let be an atomic program, and let

be a Kripke frame with

The following diagram illustrates .

In this structure, , but and . Moreover,
every state of satisfies the formula

2.3 Computation Sequences
Let be a program. Recall from Section 1.3 that a finite computation sequence
of is a finite-length string of atomic programs and tests representing a possi-
ble sequence of atomic steps that can occur in a halting execution of . These
strings are called seqs and are denoted . The set of all such sequences is
denoted . We use the word “possible” here loosely— is determined
by the syntax of alone, and may contain strings that are never executed in any
interpretation.
Formally, the set is defined by induction on the structure of :

an atomic program

DYNAMIC LOGIC 133

where and . For example, if is an atomic program and
is an atomic formula, then the program

while do

has as computation sequences all strings of the form

Note that each finite computation sequence of a program is itself a program,
and . Moreover, the following proposition is not difficult to prove
by induction on the structure of :
PROPOSITION 3.

2.4 Satisfiability and Validity
The definitions of satisfiability and validity of propositions come frommodal logic.
Let be a Kripke frame and let be a proposition. We have defined
in Section 2.2 what it means for . If for some , we say
that is satisfiable in . If is satisfiable in some , we say that is satisfiable.
If for all , we write and say that is valid in . If

for all Kripke frames , we write and say that is valid.
If is a set of propositions, we write if for all . A

proposition is said to be a logical consequence of if whenever ,
in which case we write . (Note that this is not the same as saying that

whenever .) We say that an inference rule

is sound if is a logical consequence of .
Satisfiability and validity are dual in the same sense that and are dual and
and are dual: a proposition is valid (in) if and only if its negation is not

satisfiable (in).
EXAMPLE 4. Let be atomic propositions, let be atomic programs, and
let be a Kripke frame with

The following figure illustrates .

134 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

The following formulas are valid in .

Also, let be the program

Thinking of as a regular expression, generates all words over the alphabet
with an even number of occurrences of each of and . It can be shown that

for any proposition , the proposition is valid in .
EXAMPLE 5. The formula

is valid. Both sides assert in different ways that is alternately true and false along
paths of execution of the atomic program .

2.5 Basic Properties

THEOREM 6. The following are valid formulas of :

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii) .

(ix)

DYNAMIC LOGIC 135

(x)

(xi)

(xii)

(xiii)

(xiv) .

THEOREM 7. The following are sound rules of inference of :

(i) Modal generalization (GEN):

(ii) Monotonicity of :

(iii) Monotonicity of :

The converse operator is a program operator with semantics

Intuitively, the converse operator allows us to “run a program backwards;” seman-
tically, the input/output relation of the program is the output/input relation of
. Although this is not always possible to realize in practice, it is nevertheless
a useful expressive tool. For example, it gives us a convenient way to talk about
backtracking, or rolling back a computation to a previous state.
THEOREM 8. For any programs and ,

(i)

(ii)

(iii)

(iv)

(v) .

136 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

THEOREM 9. The following are valid formulas of :

(i)

(ii)

(iii)

(iv) .

The iteration operator is interpreted as the reflexive transitive closure operator
on binary relations. It is the means by which iteration is coded in . This
operator differs from the other operators in that it is infinitary in nature, as reflected
by its semantics:

(see Section 2.2). This introduces a level of complexity to beyond the other
operators. Because of it, is not compact: the set

(9)

is finitely satisfiable but not satisfiable. Because of this infinitary behavior, it is
rather surprising that should be decidable and that there should be a finitary
complete axiomatization.
The properties of the operator of come directly from the properties of

the reflexive transitive closure operator on binary relations. In a nutshell, for any
binary relation , is the -least reflexive and transitive relation containing .
THEOREM 10. The following are valid formulas of :

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix) .

DYNAMIC LOGIC 137

(x) .

(xi) .

(xii) .

Semantically, is a reflexive and transitive relation containing , and Theo-
rem 10 captures this. That is reflexive is captured in (ii); that it is transitive is
captured in (vi); and that it contains is captured in (iv). These three properties
are captured by the single property (x).

Reflexive Transitive Closure and Induction

To prove properties of iteration, it is not enough to know that is a reflexive and
transitive relation containing . So is the universal relation , and that is not
very interesting. We also need some way of capturing the idea that is the least
reflexive and transitive relation containing . There are several equivalent ways
this can be done:

(RTC) The reflexive transitive closure rule:

(LI) The loop invariance rule:

(IND) The induction axiom (box form):

(IND) The induction axiom (diamond form):

The rule (RTC) is called the reflexive transitive closure rule. Its importance is best
described in terms of its relationship to the valid formula of Theorem 10(x).
Observe that the right-to-left implication of this formula is obtained by substituting

for in the expression

(10)

138 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

Theorem 10(x) implies that is a solution of (10); that is, (10) is valid when
is substituted for . The rule (RTC) says that is the least such

solution with respect to logical implication. That is, it is the least -definable
set of states that when substituted for in (10) results in a valid formula.
The dual propositions labeled (IND) are jointly called the induction axiom.

Intuitively, the box form of (IND) says, “If is true initially, and if, after any
number of iterations of the program , the truth of is preserved by one more
iteration of , then will be true after any number of iterations of .” The diamond
form of (IND) says, “If it is possible to reach a state satisfying in some number
of iterations of , then either is true now, or it is possible to reach a state in
which is false but becomes true after one more iteration of .”
Note that the box form of (IND) bears a strong resemblance to the induction

axiom of Peano arithmetic:

Here is the basis of the induction and is the induc-
tion step, from which the conclusion can be drawn. In the axiom
(IND), the basis is and the induction step is , from which the
conclusion can be drawn.

2.6 Encoding Hoare Logic
The Hoare partial correctness assertion is encoded as
in . The following theorem says that under this encoding, Dynamic Logic
subsumes Hoare Logic.
THEOREM 11. The following rules of Hoare Logic are derivable in :

(i) Composition rule:

(ii) Conditional rule:

if then else

(iii) While rule:

while do

(iv) Weakening rule:

DYNAMIC LOGIC 139

3 FILTRATION AND DECIDABILITY

The small model property for says that if is satisfiable, then it is satisfied at
a state in a Kripke frame with no more than states, where is the number of
symbols of . This result and the technique used to prove it, called filtration, come
directly from modal logic. This immediately gives a naive decision procedure for
the satisfiability problem for : to determine whether is satisfiable, construct
all Kripke frames with at most states and check whether is satisfied at some
state in one of them. Considering only interpretations of the primitive formulas
and primitive programs appearing in , there are roughly such models, so
this algorithm is too inefficient to be practical. A more efficient algorithm will be
described in Section 5.

3.1 The Fischer–Ladner Closure
Many proofs in simpler modal systems use induction on the well-founded subfor-
mula relation. In , the situation is complicated by the simultaneous inductive
definitions of programs and propositions and by the behavior of the operator,
which make the induction proofs somewhat tricky. Nevertheless, we can still use
the well-founded subexpression relation in inductive proofs. Here an expression
can be either a program or a proposition. Either one can be a subexpression of the
other because of the mixed operators and ?.
We start by defining two functions

by simultaneous induction. The set is called the Fischer–Ladner closure of
. The filtration construction for uses the Fischer–Ladner closure of a given
formula where the corresponding proof for propositional modal logic would use
the set of subformulas.
The functions and are defined inductively as follows:

(a) , an atomic proposition

(b)

(c)

(d)

(e) , an atomic program

(f)

